首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple Anaphase-promoting Complex/Cyclosome Degrons Mediate the Degradation of Human Sgo1
Authors:Zemfira Karamysheva   Laura A. Diaz-Martinez   Sara E. Crow   Bing Li     Hongtao Yu
Affiliation:Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390
Abstract:Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion in early mitosis and, thus, prevents premature sister-chromatid separation. The protein level of Sgo1 is regulated during the cell cycle; it peaks in mitosis and is down-regulated in G1/S. Here we show that Sgo1 is degraded during the exit from mitosis, and its degradation depends on the anaphase-promoting complex/cyclosome (APC/C). Overexpression of Cdh1 reduces the protein levels of ectopically expressed Sgo1 in human cells. Sgo1 is ubiquitinated by APC/C bound to Cdh1 (APC/CCdh1) in vitro. We have further identified two functional degradation motifs in Sgo1; that is, a KEN (Lys-Glu-Asn) box and a destruction box (D box). Although removal of either motif is not sufficient to stabilize Sgo1, Sgo1 with both KEN box and D box deleted is stable in cells. Surprisingly, mitosis progresses normally in the presence of non-degradable Sgo1, indicating that degradation of Sgo1 is not required for sister-chromatid separation or mitotic exit. Finally, we show that the spindle checkpoint kinase Bub1 contributes to the maintenance of Sgo1 steady-state protein levels in an APC/C-independent mechanism.Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs in two steps in vertebrate cells (1-3). In prophase, cohesin is phosphorylated by mitotic kinases including Plk1 and removed from chromosome arms (1, 4). Then, cleavage of centromeric cohesin by separase takes place at the metaphase-to-anaphase transition to allow sister-chromatid separation (5). The shugoshin (Sgo) family of proteins plays an important role in the protection of centromeric cohesion (6, 7). Human cells depleted of Sgo1 by RNAi undergo massive chromosome missegregation (8-11). In cells with compromised Sgo1 function, centromeric cohesin is improperly phosphorylated and removed (4, 11), resulting in premature sister-chromatid separation. It has been shown recently that Sgo1 collaborates with PP2A to counteract the action of Plk1 and other mitotic kinases and to protect centromeric cohesin from premature removal (12-14). In addition, Sgo1 has also been shown to promote stable kinetochore-microtubule attachment and sense tension across sister kinetochores (8, 15). Thus, Sgo1 is crucial for mitotic progression and chromosome segregation.Orderly progression through mitosis is regulated by the anaphase-promoting complex/cyclosome (APC/C),2 a large multiprotein ubiquitin ligase that targets key mitotic regulators for destruction by the proteasome (16). APC/C selects substrates for ubiquitination by using the Cdc20 or Cdh1 activator proteins to recognize specific sequences called APC/C degrons within target proteins (17). Several APC/C degrons have been characterized, including the destruction box (D box) and the Lys-Glu-Asn box (KEN box) (18, 19). The D box, with the consensus amino acid sequence of RXXLXXXN(X indicates any amino acid), are found in many APC/C substrates, including mitotic cyclins and are essential for their ubiquitin-mediated destruction. The KEN box, which contains a consensus KEN motif, is also found in several APC/C substrates and is preferentially but not exclusively recognized by APC/CCdh1. When APC/C is active, it directs progression through and exit from mitosis by catalyzing the ubiquitination and timely destruction of mitotic regulators, including cyclin A, cyclin B, and the separase inhibitor securin (16). The APC/C activity needs to be tightly controlled to prevent unscheduled substrate degradation. An important mechanism for APC/C regulation is the spindle checkpoint, which prevents the activation of APC/C and destruction of its substrates in response to kinetochores that have not properly attached to the mitotic spindle (20).Recent evidence shows that Sgo1 is a substrate of APC/C, and its protein levels oscillate during the cell cycle (8, 9). In this article we study the degradation of Sgo1 in human cells. We show that Sgo1 is degraded during mitotic exit, and this degradation depends on APC/CCdh1. We further show that both KEN and D boxes are required for Sgo1 degradation in vivo and ubiquitination in vitro. Removal of these motifs stabilizes Sgo1 in vivo. The prolonged presence of stable Sgo1 protein in human cells does not change the kinetics of chromosome segregation and mitotic exit. Therefore, a timely scheduled degradation of Sgo1 takes place but is not required for mitotic exit. Finally, we show that Bub1 regulates Sgo1 protein levels through a mechanism that does not involve APC/C-mediated degradation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号