首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA Binding and Cleavage by the Fowlpox Virus Resolvase
Authors:Matthew J Culyba  Young Hwang  Nana Minkah  and Frederic D Bushman
Institution:Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Abstract:The first steps of poxvirus DNA synthesis yield concatemeric arrays of covalently linked genomes. The virus-encoded Holliday junction resolvase is required to process concatemers into unit-length genomes for packaging. Previous studies of the vaccinia virus resolvase have been problematic due to poor protein solubility. We found that fowlpox virus resolvase was much more tractable. Fowlpox resolvase formed complexes with a variety of branched DNA substrates, but not linear DNA, and had the highest affinity for a Holliday junction substrate, illustrating a previously unappreciated affinity for Holliday junctions over other substrates. The cleavage activity was monitored in fixed time assays, showing that, as with vaccinia resolvase, the fowlpox enzyme could cleave a wide array of branched DNA substrates. Single turnover kinetic analysis revealed the Holliday junction substrate was cleaved 90-fold faster than a splayed duplex substrate containing a single to double strand transition. Multiple turnover kinetic analysis, however, showed that the cleavage step was not limiting for the full reaction cycle. Cleavage by resolvase was also tightly coupled at symmetrical positions across the junction, and coupling required the complete Holliday junction structure. Last, we found that cleavage of an extruded cruciform yielded a product, which after treatment with ligase, had the properties expected for covalently closed DNA hairpin ends, as is seen for poxvirus genome monomers. These findings provide a tractable poxvirus resolvase usable for the development of small molecule inhibitors.Poxvirus DNA replication is proposed to proceed by a “rolling hairpin” mechanism to yield linear concatemers, in which genomes are arranged in mostly head-to-head and tail-to tail orientation (Fig. 1, step 1) (1). The terminal sequences at each junction form an inverted repeat, which can be extruded to form a cruciform structure (step 2) (2). Cleavage of the resulting Holliday junctions on each end frees the monomer genome from the concatemer (step 3). The nicks left behind after resolution of the Holliday junction can then be ligated, yielding the hairpin DNA ends characteristic of poxviruses (step 4).Open in a separate windowFIGURE 1.Role of poxvirus resolvase during viral replication. Black lines indicate single DNA strands. Half-arrows indicate repeated sequences. Small arrows indicate resolvase cleavage sites. 1) Poxvirus genome replication yields concatemers; 2) inverted repeat sequences at concatemer junctions extrude to form cruciform structures; 3) Holliday junction cleavage by resolvase at cruciform structures yields unit-length genomes with preserved hairpin ends; 4) ligase seals nicks to yield mature genome monomers.The vaccinia virus resolvase gene, A22R, was first recognized in bioinformatic surveys to encode a member of the RNase H superfamily of polynucleotide phosphotransfer enzymes (3). These enzymes catalyze attack of a hydroxyl group on a phosphodiester bond, thereby supporting a variety of nuclease or DNA joining reactions. Garcia et al. (3) purified recombinant vaccinia resolvase and showed that it displayed cleaving activity on model Holliday junctions. They also generated a conditional A22R recombinant vaccinia virus and showed that in the absence of A22R expression, vaccinia failed to replicate and concatemer junctions accumulated, indicating that A22 resolvase indeed is required for concatemer resolution in vivo (4). Subsequent studies by Garcia et al. (5) and Culyba et al. (6) showed that vaccinia resolvase had little sequence specificity, and that cleavage yielded a 3′-hydroxyl group suitable for subsequent DNA ligation. Culyba et al. (7) also showed that several further branched DNA molecules could be cleaved by vaccinia resolvase, establishing that the enzyme could potentially process a variety of branched DNA forms expected to arise during recombination or replication, suggesting possible additional roles for poxvirus resolvase.Progress in studying poxvirus resolvase has been limited by the poor solubility of the purified vaccinia protein. For example, in Garcia et al. (5), the vaccinia resolvase was fused to maltose-binding protein to improve solubility, but consequently the properties of the maltose-binding protein portion of the fusion must be considered in interpreting the results. Pilot studies from our laboratory showed that the insolubility and low activity of the vaccinia virus resolvase precluded its use in high-throughput screens for inhibitors (data not shown).In an effort to identify a more tractable poxvirus resolvase protein, we attempted to clone four other poxvirus resolvase genes and purify the gene products after overexpression in bacteria. We found that the fowlpox resolvase was much more soluble and active than the others tested. Analysis of cleavage revealed that a wide range of branched DNA forms were substrates, paralleling results with vaccinia resolvase and establishing that these activities are a conserved property of poxvirus resolvases. Binding analysis on these same DNA forms also revealed a strict specificity for branched DNA, with the highest affinity binding for the Holliday junction, suggesting that DNA binding specificity is the major discriminatory mechanism for DNA cleavage activity. Kinetic analysis was feasible with fowlpox resolvase, allowing us to show that the first-order rate constant for strand cleavage under single turnover conditions is 90-fold greater for a Holliday junction substrate than for a splayed duplex substrate. However, this rate constant was not limiting for the Holliday junction under multiple turnover conditions, where the rate of strand cleavage is 1.9-fold slower for the Holliday junction than for the splayed duplex. Last, we show that fowlpox resolvase cleavage at Holliday junctions is coupled, so that nicking on one strand also promoted nicking on the strand located across the junction from it. These studies indicate that fowlpox resolvase is well suited to in vitro analysis and suggests approaches to high-throughput screening for resolvase inhibitors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号