首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Linear electrical properties of passive and active currents in spherical heart cell clusters.
Authors:R T Mathias  L Ebihara  M Lieberman  and E A Johnson
Abstract:Impedance studies were performed on small spherical clusters of embryonic chick heart cells grown in tissue culture. Each syncytial cluster was impaled with two microelectrodes; one injected low amplitude stochastic current and the other recorded the resulting perturbation of intracellular potential. The current and potential records were digitized, decomposed into their sinusoidal components, and the frequency domain impedance of the cluster was determined. The impedance data were compared with a theory for current flow in a spherical syncytium and values were derived for parameters describing the membranes and intercellular clefts of the tissue. The clusters were spontaneously active but usually became temporarily quiescent when impaled with two electrodes. The potential stabilized at a value close to -30 mV. At this depolarized potential, active slow currents, presumably present in the cardiac action potential, contributed noticeably to the linear impedance, producing a resonant peak in the magnitude of the impedance at a frequency of 1-3 Hz. The linearized impedance functions for these currents were characterized in the presence and absence of tetrodotoxin (TTX) and D-600. TTX had no noticeable effect on the impedance but D-600 essentially abolished the active currents. Although the ionic basis of these currents is not known, frequency domain analysis appears to be a viable technique for studying slow currents in heart muscle.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号