首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of the junctional integrity by low or high concentrations of cytochalasin B and dihydrocytochalasin B in associated with distinct changes in F-actin and ZO-1
Authors:Pia Nybom  Karl -Eric Magnusson
Institution:(1) Department of Medical Microbiology, Linköping University, S-581 85 Linköping, Sweden
Abstract:In a study of Necturus gallbladder epithelium Benzel et al. (Benzel et al., 1980) found that low (0.2–1.2 mgrM) and higher concentrations (1.5 mgrM and more) of cytochalasin B (CB) caused an increase and decrease in the transepithelial electrical resistance (TER), respectively. Moreover, there were slight changes in the height and complexicity of tight junction (TJ) strands, as visualized by freeze-fracture and freeze-etching. To elucidate the mechanisms of these findings, we first demonstrated that the effect is also present in monolayers of Madin-Darby Canine Kidney strain I (MDCK-I) cells. Thus, a low concentration (0.1 ng/ml) cytochalasin B (CB) strengthened the permeability barrier, as evidenced quantitatively by increases in TER on transepithelial electrical measurements. Furthermore, indirect immunofluorescence and confocal microscopy demonstrated that this effect was paralleled with an accumulation of F-actin and the tight junction marker protein, ZO-1, at the level of TJ. Equimolar concentrations of dihydrocytochalasin B (dhCB), on the other hand, did not lead to a tightening of the epithelium. Confirming previous studies, there was a general decrease in epithelial resistance after treatment with high concentrations (1 mgrg/ml) of CB and dhCB, which was accompanied by distinct changes in the F-actin network and distribution of ZO-1. We speculate that the divergent effects of CB and dhCB on the F-actin and ZO-1 organization might be due to specific effects on the transport of monosaccharides across the plasma membrane, or that CB and dhCB in distinct ways involve the turnover of phosphatidylinositols in the membrane, thereby modulating junctional permeability and F-actin structure.
Keywords:cytochalasin B  dihydrocytochalasin B  MDCK-I cells  transepithelial electrical resistance  ZO-1  F-actin  tight junction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号