首页 | 本学科首页   官方微博 | 高级检索  
     


Distinct axonemal processes underlie spontaneous and stimulated airway ciliary activity
Authors:Ma Weiyuan  Silberberg Shai D  Priel Zvi
Affiliation:Department of Chemistry, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Abstract:Cilia are small organelles protruding from the cell surface that beat synchronously, producing biological transport. Despite intense research for over a century, the mechanisms underlying ciliary beating are still not well understood. Even the nature of the cytosolic molecules required for spontaneous and stimulated beating is debatable. In an effort to resolve fundamental questions related to cilia beating, we developed a method that integrates the whole-cell mode of the patch-clamp technique with ciliary beat frequency measurements on a single cell. This method enables to control the composition of the intracellular solution while the cilia remain intact, thus providing a unique tool to simultaneously investigate the biochemical and physiological mechanism of ciliary beating. Thus far, we investigated whether the spontaneous and stimulated states of cilia beating are controlled by the same intracellular molecular mechanisms. It was found that: (a) MgATP was sufficient to support spontaneous beating. (b) Ca(2+) alone or Ca(2+)-calmodulin at concentrations as high as 1 microM could not alter ciliary beating. (c) In the absence of Ca(2+), cyclic nucleotides produced a moderate rise in ciliary beating while in the presence of Ca(2+) robust enhancement was observed. These results suggest that the axonemal machinery can function in at least two different modes.
Keywords:calcium signaling   cilia   molecular motors   cyclic nucleotides   patch-clamp techniques
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号