首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ca2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin
Authors:B Huppertz  I Weyand  P J Bauer
Institution:Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich GmbH, Federal Republic of Germany.
Abstract:Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca2+ titration in the presence of the indicator arsenazo III and 45Ca2+ autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca2+ binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca2+ binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yield dissociation constants for the Ca2+ binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca2+ binding site per arrestin. No Ca2+ binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca2+ buffer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号