首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The sequence of the major protein stored in ovine ceroid lipofuscinosis is identical with that of the dicyclohexylcarbodiimide-reactive proteolipid of mitochondrial ATP synthase.
Authors:I M Fearnley  J E Walker  R D Martinus  R D Jolly  K B Kirkland  G J Shaw  and D N Palmer
Institution:M.R.C. Laboratory of Molecular Biology, Cambridge, U.K.
Abstract:The ceroid lipofuscinoses are a group of neurodegenerative lysosomal storage diseases of children and animals that are recessively inherited. In diseased individuals fluorescent storage bodies accumulate in a wide variety of cells, including neurons. Previous studies of these bodies isolated from tissues of affected sheep confirmed that the storage occurs in lysosomes, and showed that the storage body is mostly made of a single protein with an apparent molecular mass of 3500 Da with an N-terminal amino acid sequence that is the same as residues 1-40 of the c-subunit (or dicyclohexylcarbodi-imide-reactive proteolipid) of mitochondrial ATP synthase. In the present work we have shown by direct analysis that the stored protein is identical in sequence with the entire c-subunit of mitochondrial ATP synthase, a very hydrophobic protein of 75 amino acid residues. As far as can be detected by the Edman degradation, the stored protein appears not to have been subject to any post-translational modification other than the correct removal of the mitochondrial import sequences that have been shown in other experiments to be present at the N-terminal of its two different precursors. No other protein accumulates in the storage bodies to any significant extent. Taken with studies of the cDNAs for the c-subunit in normal and diseased sheep, these results indicate that the material that is stored in lysosomes of diseased animals has probably entered mitochondria and has been subjected to the proteolytic processing that is associated with mitochondrial import. This implies that the defect that leads to the lysosomal accumulation concerns the degradative pathway of the c-subunit of ATP synthase. An alternative, but less likely, hypothesis is that for some unknown reason the precursors of subunit c are being directly mis-targeted to lysosomes, where they become processed to yield a protein identical with the protein that is normally found in the mitochondrial ATP synthase assembly, and which then accumulates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号