首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemistry and physiology of nitrogen fixation with particular emphasis on nitrogen-fixing phototrophs
Authors:W D P Stewart  P Rowell
Institution:(1) A.F.R.C. Research Group on Cyanobacteria, Department of Biological Sciences, University of Dundee, Dundee, UK
Abstract:Summary This paper presents an overview of aspects of N2-fixation in phototrophic N2-fixers. Nitrogenase is little different in phototrophs from other organisms. Evidence suggests that fixed carbon dissimilation rather than direct photoreduction from oxidised inorganic compounds or exogenous photosynthetic electron donors is the major route of reductant supply to nitrogenase in phototrophs; inRhodospirillum rubrum pyruvate is a possible electron donor to nitrogenase; in cyanobacteria the oxidative pentose phosphate pathway is important, although some recent evidence implicates glycolysis and the tricarboxylic acid cycle in reductant supply in heterocystous cyanobacteria. In photosynthetic organisms light modulation of various enzymes occurs-some Calvin cycle enzymes are light activated, some oxidative pentose phosphate pathway and glycolytic enzymes are deactivated and some tricarboxylic acid cycle enzymes are activated. Reduced levels of thioredoxin in heterocysts may contribute to the sustained functioning of the oxidative pentose phosphate pathway in heterocysts in the light and dark. In photosynthetic bacteria such asRhodospirillum rubrum an activating enzyme which removes a modifying group from inactive Fe protein can activate nitrogenase. O2 and NH 4 + both inhibit N2-fixation and there is some evidence in cyanobacteria that O2 stability of whole cell nitrogenase can be achieved by prolonged incubation of cultures at high O2.
Keywords:Cyanobacteria  Heterocysts  Nitrogenase  Oxidative pentose phosphate pathway  Thioredoxin
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号