Augmentation of Soil with Sporangia of Actinoplanes spp. for Biological Control of Pythium Damping-off |
| |
Authors: | N. I. Khan A. B. Filonow L. L. Singleton |
| |
Affiliation: | a Department of Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA. |
| |
Abstract: | A method was developed for applying strains of Actinoplanes spp. that are hyper-parasites of oospores of Pythium ultimum to soil for reducing Pythium damping-off of plants. The method is based on the augmentation of soil with sporangia of a strain of Actinoplanes spp. borne on clay granules. In vitro sporulation of strains K30, W57, W257 and 25844 was: (1) greater for most strains on dilute Czapek-Dox agar than on four other agar media; (2) inhibited by continuous exposure to fluorescent light of intensity 4-150 μEm-2s-1, but not by exposure to 1 μEm-2s-1 or darkness; (3) greater at 20-307deg;C than at 10°C;and (4) greater at pH 6-7 than at pH 5 or 8. On solid carriers treated with dilute Czapek-Dox broth (pH 7) and incubated in the dark at 30°C for 3 weeks, strains sporulated poorly or not at all on vermiculite, perlite and rice hulls, but sporulated abundantly (107-109 colony-forming units (CFU) g-1 of granules) on montmorillonite clay granules. When strains 25844, W57 and W257 were applied as granules (4 107 - 4 × 108 CFU g-1) at 5% (w/w) to field plots infested with 750-1000 oospores of P. ultimum g-1 of soil, only strain 25844 consistently increased emergence and reduced root rot of table beets 8- 1 at 24-28 days after planting compared with controls. Strain 25844 (108 CFU g-1 of granules) at 1% (w/w) also increased the emergence of bush beans at 28 days after planting in P. ultimum-infested plots, but lower rates were ineffective. The inoculum viability of strain 25844 on clay granules declined 100-fold during 2 months of storage at 5-35°C, but thereafter remained stable for another 4 months. Strain 25844 on 6-month-old granules retained a high degree of hyper-parasitic activity toward oospores of P. ultimum. Augmentation of field soil with sporangia of Actinoplanes spp. is a valid approach to the biological control of pythium damping-off. |
| |
Keywords: | Clay Granules Temperature Ph Light Actinomycetes Hyper-parasitism Sporulation Pythium Damping-off |
本文献已被 InformaWorld 等数据库收录! |
|