首页 | 本学科首页   官方微博 | 高级检索  
     


Bacterial N-succinyl-L-diaminopimelic acid desuccinylase. Purification, partial characterization, and substrate specificity
Authors:Y K Lin  R Myhrman  M L Schrag  M H Gelb
Affiliation:Department of Chemistry, University of Washington, Seattle 98195.
Abstract:The enzyme N-succinyl-L-diaminopimelic acid desuccinylase from Escherichia coli has been purified 7,100-fold to apparent homogeneity. The enzyme is part of the diaminopimelic acid-lysine pathway in bacteria and catalyzes the hydrolysis of N-succinyl-L-diaminopimelic acid to produce L-diaminopimelic acid and succinate. The enzyme exists as a mixture of dimeric and tetrameric species of identical subunits of molecular weight approximately 40,000. Activity was completely abolished following dialysis of the enzyme against metal chelators. Cobalt(II) and zinc were effective in restoring the activity. The apparent affinities of the apoenzyme for cobalt and zinc were similar (Kd values near 1 microM) and the cobalt enzyme was 2.2-fold more active than the zinc enzyme. The Km and turnover number for the hydrolysis of the natural substrate, N-succinyl-L-diaminopimelic acid, were 0.4 mM and 16,000 min-1, respectively. The substrate specificity of the enzyme was defined by preparing a number of substrate analogues that systematically lack the various functional groups present in the molecule. These studies show that the enzyme is highly specific for the natural substrate. These properties of N-succinyl-L-diaminopimelic acid desuccinylase and the fact that the enzyme is essential for bacterial growth make it an ideal target for the development of inhibitors with potential antibacterial activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号