首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence that a type-2 NADH:quinone oxidoreductase mediates electron transfer to particulate methane monooxygenase in methylococcus capsulatus.
Authors:Scott A Cook  Andrew K Shiemke
Institution:Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9142, USA.
Abstract:NADH readily provides reducing equivalents to membrane-bound methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) in isolated membrane fractions, but detergent solubilization disrupts this electron-transfer process. Addition of exogenous quinones (especially decyl-plastoquinone and duroquinone) restores the NADH-dependent pMMO activity. Results of inhibitor and substrate dependence of this activity indicate the presence of only a type-2 NADH:quinone oxidoreductase (NDH-2). A 100-fold purification of the NDH-2 was achieved using lauryl-maltoside solubilization followed by ion exchange, hydrophobic-interaction, and gel-filtration chromatography. The purified NDH-2 has a subunit molecular weight of 36 kDa and exists as a monomer in solution. UV-visible and fluorescence spectroscopy identified flavin adenine dinucleotide (FAD) as a cofactor present in stoichiometric amounts. NADH served as the source of electrons, whereas NADPH could not. The purified NDH-2 enzyme reduced coenzyme Q(0), duroquinone, and menaquinone at high rates, whereas the decyl analogs of ubiquinone and plastoquinone were reduced at approximately 100-fold lower rates. Rotenone and flavone did not inhibit the NDH-2, whereas amytal caused partial inhibition but only at high concentrations.
Keywords:methanotroph  methane oxidation  quinones  quinone reductase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号