首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolism of progesterone by hamster blastocysts and the ontogeny of progesterone metabolic capability
Authors:J T Wu
Abstract:Progesterone (P) is required for the differentiation of reproductive tracts and maintenance of pregnancy. This study investigates whether the hamster blastocyst is capable of metabolizing P and, if so, at what stage of preimplantation development such capability becomes detectable. When the blastocysts collected from superovulated hamsters on Day 4 of pregnancy were cultured in 0.4 microM P medium, P metabolism was easily detectable at 1.25 h of culture and over half was metabolized by 7.5 h. Two major metabolites were generated: 5 alpha-pregnane-3,20-dione (or 5 alpha-dihydroprogesterone; 5 alpha-DHP) and 5 alpha-pregnane-3 beta-ol-20-one (or allopregnanolone; AP), about 90-95% and 5-10%, respectively. This indicates the activity of two enzymes: delta 4-5 alpha-reductase and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD). The rate of P metabolism increased with P concentration (0.4-6.4 microM), indicating a high capacity of the enzymes. Studies of embryos collected on Days 1-3 showed that P metabolism was not detectable up to 0100 h of Day 3 (2-4-cell), but was detectable with two metabolites, 5 alpha-DHP and AP, at 1515 h of Day 3 (morula) and thereafter. This indicates that, by the morula stage, the hamster embryo has already acquired the enzymatic capability (5 alpha-reductase and 3 beta-HSD) to metabolize P. These results, together with our earlier finding of 17 beta-hydroxysteroid dehydrogenase activity in Days 1-4 embryos, suggest that hamster preimplantation embryos can metabolize both P and estrogens, thus possibly modulating local actions of these hormones and causing local effects in the reproductive tract.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号