首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin
Authors:Krantz Bryan A  Trivedi Amar D  Cunningham Kristina  Christensen Kenneth A  Collier R John
Institution:Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA.
Abstract:The two enzymatic components of anthrax toxin, lethal factor (LF) and edema factor (EF), are transported to the cytosol of mammalian cells by the third component, protective antigen (PA). A heptameric form of PA binds LF and/or EF and, under the acidic conditions encountered in endosomes, generates a membrane-spanning pore that is thought to serve as a passageway for these enzymes to enter the cytosol. The pore contains a 14-stranded transmembrane beta-barrel that is too narrow to accommodate a fully folded protein, necessitating that LF and EF unfold, at least partly, in order to pass. Here, we describe the pH-dependence of the unfolding of LF(N) and EF(N), the 30kDa N-terminal PA-binding domains, and minimal translocatable units, of LF and EF. Equilibrium chemical denaturation studies using fluorescence and circular dichroism spectroscopy show that each protein unfolds via a four-state mechanism: N<-->I<-->J<-->U. The acid-induced N-->I transition occurs within the pH range of the endosome (pH 5-6). The I state predominates at lower pH values, and the J and U states are populated significantly only in the presence of denaturant. The I state is compact and has characteristics of a molten globule, as shown by its retention of significant secondary structure and its ability to bind an apolar fluorophore. The N-->I transition leads to an overall 60% increase in buried surface area exposure. The J state is expanded significantly and has diminished secondary structure content. We analyze the different protonation states of LF(N) and EF(N) in terms of a linked equilibrium proton binding model and discuss the implications of our findings for the mechanism of acidic pH-induced translocation of anthrax toxin. Finally, analysis of the structure of the transmembrane beta-barrel of PA shows that it can accommodate alpha-helix, and we suggest that the steric constraints and composition of the lumen may promote alpha-helix formation.
Keywords:anthrax toxin  lethal factor  edema factor  translocation  unfolding pathway
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号