首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of polymerases-alpha and -beta completely blocks DNA repair induced by UV irradiation in cultured mouse neuronal cells
Authors:F Licastro  T Sarafian  A M Verity  R L Walford
Abstract:The effects of hydroxyurea, aphidicolin and dideoxythymidine on UV-induced DNA repair of mouse neuronal granular cells were studied. Aphidicolin, which is considered a specific inhibitor of polymerase-alpha, decreased spontaneous DNA synthesis by 93% and totally suppressed DNA repair. Dideoxythymidine, an inhibitor of polymerase-beta, was more potent in decreasing scheduled DNA synthesis than aphidicolin, and also completely blocked the UV-induced DNA repair. Hydroxyurea, a specific inhibitor of ribonucleotide reductase, inhibited scheduled DNA synthesis, but unscheduled DNA synthesis after UV irradiation was always well detectable. Our data suggest that in neuronal cells from 5 to 10 days old mice both polymerases-alpha and -beta are required for both DNA synthesis and repair. These two enzymes may act jointly in filling up the gaps along the DNA molecule and elongating the DNA chain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号