首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Roles of the Snf1-Activating Kinases during Nitrogen Limitation and Pseudohyphal Differentiation in Saccharomyces cerevisiae
Authors:Marianna Orlova  Hamit Ozcetin  LaKisha Barrett  Sergei Kuchin
Institution:Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
Abstract:In Saccharomyces cerevisiae, Snf1 protein kinase is important for growth on carbon sources that are less preferred than glucose. When glucose becomes limiting, Snf1 undergoes catalytic activation, which requires phosphorylation of its T-loop threonine (Thr210). Thr210 phosphorylation can be performed by any of three Snf1-activating kinases: Sak1, Tos3, and Elm1. These kinases are redundant in that all three must be eliminated to confer snf1Δ-like growth defects on nonpreferred carbon sources. We previously showed that in addition to glucose signaling, Snf1 also participates in nitrogen signaling and is required for diploid pseudohyphal differentiation, a filamentous-growth response to nitrogen limitation. Here, we addressed the roles of the Snf1-activating kinases in this process. Loss of Sak1 caused a defect in pseudohyphal differentiation, whereas Tos3 and Elm1 were dispensable. Sak1 was also required for increased Thr210 phosphorylation of Snf1 under nitrogen-limiting conditions. Expression of a catalytically hyperactive version of Snf1 restored pseudohyphal differentiation in the sak1Δ/sak1Δ mutant. Thus, while the Snf1-activating kinases exhibit redundancy for growth on nonpreferred carbon sources, the loss of Sak1 alone produced a significant defect in a nitrogen-regulated phenotype, and this defect resulted from deficient Snf1 activation rather than from disruption of another pathway. Our results suggest that Sak1 is involved in nitrogen signaling upstream of Snf1.Snf1 protein kinase of the yeast Saccharomyces cerevisiae belongs to the conserved Snf1/AMP-activated protein kinase (AMPK) family; members of this family play central roles in responses to metabolic stress in eukaryotes (reviewed in references 17 and 18). Interest in Snf1/AMPK pathways is high due to their important functions. Deregulation of AMPK signaling in humans has been linked to type 2 diabetes, heart disease, and cancer (for a review, see reference 16). Snf1 homologs of pathogenic fungi have been implicated in virulence and drug resistance (23, 63, 64).Yeast Snf1 (Cat1, Ccr1) was first identified by its requirement for growth on carbon sources that are less preferred than glucose (5, 7, 65). Subsequent evidence indicated that Snf1 protein kinase (6) is directly involved in glucose signaling, since its activity is stimulated in response to glucose limitation (62). Catalytic activation of Snf1 occurs through phosphorylation of its conserved T-loop threonine (Thr210) (12) by upstream kinases (40, 62). Three protein kinases—Sak1, Tos3, and Elm1—have been identified that can phosphorylate Thr210 of Snf1 (22, 41, 55). These kinases are related to the mammalian kinases that activate AMPK by phosphorylating the equivalent T-loop threonine (Thr172) (reviewed in references 17 and 18). We recently presented evidence that Snf1 homologs of two pathogenic Candida species, Candida albicans and C. glabrata, also undergo T-loop phosphorylation (42).It is not entirely clear why S. cerevisiae has three different kinases that can activate Snf1. Judging by assays of Snf1 kinase activity, Sak1 makes the largest individual contribution to Snf1 activation in the cell (19, 22). However, deletion of SAK1 alone does not result in growth defects on alternative carbon sources, and all three Snf1-activating kinases must be eliminated to produce a phenotypic defect comparable to that of the snf1Δ mutant (22, 39, 55). Deletion of TOS3 was reported to moderately affect growth on nonfermentable carbon sources; this correlated with a reduction in Snf1 activity, although effects on another pathway(s) cannot be excluded (25). Mutation of ELM1 affects cell cycle progression and cell morphology, but this effect is unrelated to Elm1''s role as a Snf1-activating kinase and pertains to its role in the activation of Nim1-related protein kinases involved in morphogenesis checkpoint control (1, 56).While showing significant redundancy for growth on nonpreferred carbon sources, the Snf1-activating kinases could exhibit specialization in Snf1 signaling in response to stresses other than carbon stress. Evidence indicates that Snf1 is important for adaptation to a number of stress conditions (reviewed in reference 18). In some cases, such as genotoxic stress or exposure to hygromycin B, weak activity of unphosphorylated Snf1 appears to be sufficient for resistance (10, 48). In others, such as sodium ion stress and alkaline stress, Thr210 phosphorylation of Snf1 is required for adaptation, and Snf1 becomes activated upon stress exposure (21, 40). As with glucose limitation, however, in these latter cases Sak1 makes the largest contribution to Snf1 activation judging by biochemical assays, and yet it remains dispensable for wild-type levels of stress-resistant growth in phenotypic tests; loss of all three Snf1-activating kinases results in growth defects comparable to those of cells lacking Snf1 (21). Thus, investigation of these stresses provided no evidence for phenotypically relevant specialization of Sak1, Tos3, or Elm1 in Snf1 signaling.Diploid pseudohyphal differentiation is a developmental response to nitrogen limitation (15). When nitrogen becomes limiting, diploid cells adopt elongated morphology, alter their budding pattern, and generate filaments (pseudohyphae) consisting of chains of cells attached to one another. One of the key events in this process is activation of the FLO11 (MUC1) gene, which encodes a cell surface glycoprotein involved in cell-cell adhesion (29, 33, 34). Following up on an observation that Snf1 is important for FLO11 expression on low glucose, we previously found that diploids lacking Snf1 fail to undergo pseudohyphal differentiation on low nitrogen (27, 28). The requirement of Snf1 for a nitrogen-regulated process raised the possibility that Snf1 is directly involved in nitrogen signaling. In support of this notion, we subsequently showed that weak activity of nonphosphorylatable Snf1-T210A is not sufficient for pseudohyphal differentiation and that Thr210 phosphorylation of Snf1 increases in response to nitrogen limitation (43).Here, we have examined the roles of Sak1, Tos3, and Elm1 in pseudohyphal differentiation and Snf1 activation on low nitrogen. We show that elimination of Sak1 leads to a significant defect in nitrogen-regulated pseudohyphal differentiation, whereas Tos3 and Elm1 are dispensable. Sak1 is also required for normal Thr210 phosphorylation of Snf1 under nitrogen-limiting conditions. Our data strongly suggest that the loss of Sak1 affects pseudohyphal differentiation by affecting Snf1 activation and not by disruption of another pathway. Collectively, our findings implicate Sak1 in nitrogen signaling upstream of Snf1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号