Use of a Foam Spatula for Sampling Surfaces after Bioaerosol Deposition |
| |
Authors: | Rafa? Lewandowski Krystyna Koz?owska Ma?gorzata Szpakowska Ma?gorzata St?pińska El?bieta A. Trafny |
| |
Affiliation: | Department of Microbiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland |
| |
Abstract: | The present study had three goals: (i) to evaluate the relative quantities of aerosolized Bacillus atrophaeus spores deposited on the vertical, horizontal top, and horizontal bottom surfaces in a chamber; (ii) to assess the relative recoveries of the aerosolized spores from glass and stainless steel surfaces with a polyester swab and a macrofoam sponge wipe; and (iii) to estimate the relative recovery efficiencies of aerosolized B. atrophaeus spores and Pantoea agglomerans using a foam spatula at several different bacterial loads by aerosol distribution on glass surfaces. The majority of spores were collected from the bottom horizontal surface regardless of which swab type and extraction protocol were used. Swabbing with a macrofoam sponge wipe was more efficient in recovering spores from surfaces contaminated with high bioaerosol concentrations than swabbing with a polyester swab. B. atrophaeus spores and P. agglomerans culturable cells were detected on glass surfaces using foam spatulas when the theoretical surface bacterial loads were 2.88 × 104 CFU and 8.09 × 106 CFU per 100-cm2 area, respectively. The median recovery efficiency from the surfaces using foam spatulas was equal to 9.9% for B. atrophaeus spores when the recovery was calculated relative to the theoretical surface spore load. Using a foam spatula permits reliable sampling of spores on the bioaerosol-exposed surfaces in a wide measuring range. The culturable P. agglomerans cells were recovered with a median efficiency of 0.001%, but staining the swab extracts with fluorescent dyes allowed us to observe that the viable cell numbers were higher by 1.83 log units than culturable organisms. However, additional work is needed to improve the analysis of the foam extracts in order to decrease the limit of detection of Bacillus spores and Gram-negative bacteria on contaminated surfaces.Surface sampling is performed on a frequent basis in all situations where clean environment monitoring is needed, e.g., in health care facilities and in the pharmaceutical industry and food industry. An anthrax bioterrorist event in the fall of 2001 has emphasized the importance of efficient sampling methods for detection of pathogenic microorganisms on surfaces within intentionally contaminated locations (22). Unfortunately, our knowledge on the most effective sampling methodology as well as the level of confidence we may have in the results obtained by wiping, swabbing, and other sample collection strategies is still limited (1). Moreover, in most of the studies performed so far, bacteria and/or spores were collected from test samples or coupons of various materials, inoculated with a suspension of microorganisms that had been placed and spread over the surface, and then dried (14, 15). This may not mimic the true situation of surface contamination by a pathogen that has been intentionally released. Edmonds et al. (12) recently reported lower swabbing efficiencies of different types of swab materials used for sampling glass, polycarbonate, and vinyl surfaces contaminated with dry aerosol-deposited Bacillus atrophaeus spores compared to the surfaces inoculated by spore suspensions. Solid surface contamination from exposure to aerosolized spores fits the real world better than the previous models.Therefore, in our study we decided to generate aerosols of various concentrations of B. atrophaeus spores as well as the vegetative cells of Pantoea agglomerans inside a chamber where the bioaerosol particles were allowed to gravitationally settle on solid surfaces. The aerosolization of P. agglomerans was performed to verify the recovery of Gram-negative bacteria according to the recommendations of Budowle et al. (5). The main goal of our study was to establish the range of detection when bioaerosol-contaminated surfaces were swabbed using a commercially available foam spatula. |
| |
Keywords: | |
|
|