首页 | 本学科首页   官方微博 | 高级检索  
     


Dissociation of the Octameric Enolase from S. Pyogenes - One Interface Stabilizes Another
Authors:Farhad Karbassi  Veronica Quiros  Vijay Pancholi  Mary J. Kornblatt
Affiliation:1. Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.; 2. Department of Pathology, Ohio State University, Columbus, Ohio, United States of America.;University of Oulu, Finland
Abstract:Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO4, a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO4 dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号