首页 | 本学科首页   官方微博 | 高级检索  
     


Localization of Proteins to Different Layers and Regions of Bacillus subtilis Spore Coats
Authors:Daisuke Imamura  Ritsuko Kuwana  Hiromu Takamatsu  Kazuhito Watabe
Affiliation:Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
Abstract:Bacterial spores are encased in a multilayered proteinaceous shell known as the coat. In Bacillus subtilis, over 50 proteins are involved in spore coat assembly but the locations of these proteins in the spore coat are poorly understood. Here, we describe methods to estimate the positions of protein fusions to fluorescent proteins in the spore coat by using fluorescence microscopy. Our investigation suggested that CotD, CotF, CotT, GerQ, YaaH, YeeK, YmaG, YsnD, and YxeE are present in the inner coat and that CotA, CotB, CotC, and YtxO reside in the outer coat. In addition, CotZ and CgeA appeared in the outermost layer of the spore coat and were more abundant at the mother cell proximal pole of the forespore, whereas CotA and CotC were more abundant at the mother cell distal pole of the forespore. These polar localizations were observed both in sporangia prior to the release of the forespore from the mother cell and in mature spores after release. Moreover, CotB was observed at the middle of the spore as a ring- or spiral-like structure. Formation of this structure required cotG expression. Thus, we conclude not only that the spore coat is a multilayered assembly but also that it exhibits uneven spatial distribution of particular proteins.Proper localization and assembly of proteins in cells and subcellular structures are essential features of living organisms. Complex protein assemblies, including ribosomes, flagella, and the cytokinetic machinery, play important roles in bacteria (26, 27, 40). Studying how these complex structures are formed is a fundamental theme in molecular biology. In this work, we developed a method to analyze one of the most complex bacterial protein assemblies: the spore coat of Bacillus subtilis.Sporulation of B. subtilis is initiated in response to nutrient limitation, and it involves a highly ordered program of gene expression and morphological change (33, 42). The first morphological change of sporulation is the appearance of an asymmetrically positioned septum that divides the cell into a larger mother cell and a smaller forespore. Next, the mother cell membrane migrates around the forespore membrane during a phagocytosis-like process called engulfment. The completion of engulfment involves fusion of the mother cell membrane to pinch off the forespore within the mother cell. Compartment-specific gene expression brings about maturation of the spore and its release upon lysis of the mother cell (reviewed in reference 19). Mature spores remain viable during long periods of starvation and are resistant to heat, toxic chemicals, lytic enzymes, and other factors capable of damaging vegetative cells (30). Spores germinate and resume growth when nutrients become available (32).The outer portions of Bacillus spores consist of a cortex, a spore coat layer, and in some cases, an exosporium. The cortex, a thick layer of peptidoglycan, is deposited between the inner and the outer membranes of the forespore, and it is responsible for maintaining the highly dehydrated state of the core, thereby contributing to the extreme dormancy and heat resistance of spores. Spore coat assembly involves the deposition of at least 50 protein species (12, 21, 24) into two major layers: an electron-dense outer layer, called the outer coat, and a less electron-dense inner layer with a lamellar appearance, called the inner coat (50). These layers provide a protective barrier against bactericidal enzymes and chemicals, such as lysozyme and organic solvents (30). Although disruption of any one gene encoding a spore coat protein typically has little or no effect on spore resistance, morphology, or germination, a few proteins, referred to as morphogenetic proteins, play central roles in the assembly of the spore coat (7, 10, 13). One of the morphogenetic proteins, CotE, is located between the inner and outer coats and directs the assembly of most or all of the outer coat proteins and also a few of the inner coat proteins (2, 9, 17, 25, 52). The locations of CotE, CotS, and SpoIVA in the spore coat were determined previously by immunoelectron microscopy (9, 43). CotA, CotB, CotC, and CotG were shown to be externally exposed on the surface of the spore by single-molecule recognition force spectroscopy or antibody accessibility (15, 18, 45, 28). However, the positions of most of the spore coat proteins in the coat have not been determined experimentally, although provisional assignments were made based largely on the control of assembly into the coat by CotE (17). In this study, we developed methods to estimate the positions of proteins in the spore coat layers by using fluorescence microscopy analysis of coat protein-fluorescent protein fusions, with resolution that allowed us to distinguish between the inner and outer coats. In addition, we discovered an asymmetric spatial distribution of four spore coat proteins and a ring- or spiral-like structure of CotB. These observations suggest that spore coat assembly is more intricate than previously appreciated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号