首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thioredoxin System from Deinococcus radiodurans
Authors:Josiah Obiero  Vanessa Pittet  Sara A Bonderoff  David A R Sanders
Institution:Department of Chemistry, University of Saskatchewan, Saskatoon S7N 5C9, Canada
Abstract:This paper describes the cloning, purification, and characterization of thioredoxin (Trx) and thioredoxin reductase (TrxR) and the structure determination of TrxR from the ionizing radiation-tolerant bacterium Deinococcus radiodurans strain R1. The genes from D. radiodurans encoding Trx and TrxR were amplified by PCR, inserted into a pET expression vector, and overexpressed in Escherichia coli. The overexpressed proteins were purified by metal affinity chromatography, and their activity was demonstrated using well-established assays of insulin precipitation (for Trx), 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) reduction, and insulin reduction (for TrxR). In addition, the crystal structure of oxidized TrxR was determined at 1.9-Å resolution. The overall structure was found to be very similar to that of E. coli TrxR and homodimeric with both NADPH- and flavin adenine dinucleotide (FAD)-binding domains containing variants of the canonical nucleotide binding fold, the Rossmann fold. The Km (5.7 μM) of D. radiodurans TrxR for D. radiodurans Trx was determined and is about twofold higher than that of the E. coli thioredoxin system. However, D. radiodurans TrxR has a much lower affinity for E. coli Trx (Km, 44.4 μM). Subtle differences in the surface charge and shape of the Trx binding site on TrxR may account for the differences in recognition. Because it has been suggested that TrxR from D. radiodurans may have dual cofactor specificity (can utilize both NADH and NADPH), D. radiodurans TrxR was tested for its ability to utilize NADH as well. Our results show that D. radiodurans TrxR can utilize only NADPH for activity.Deinococcus radiodurans is a gram-positive bacterium capable of withstanding exposure to extreme gamma ray and UV radiation, oxidants, and desiccation (6, 10, 26). The mechanism behind the ability of D. radiodurans to survive exposure to extreme conditions has been a subject of intense research (10, 43). Its ability to survive exposure to extreme conditions has been attributed a number of factors, as follows: a high number of genome copies (8), ring-like nucleoid organization (22), high manganese content (8), and a higher ability to scavenge reactive oxygen species (ROS) (43). However, the mechanism responsible for its extremophilic nature is not clearly understood (25).Efforts to understand the mechanism behind the capability of D. radiodurans to tolerate extreme conditions have focused on understanding its ability to prevent or repair genomic damage, because if unrepaired, genomic damage is lethal to the cell (7). The ability of D. radiodurans to repair genomic damage is likely due to its ability to prevent proteome damage, i.e., its ability to maintain sufficient enzymatic activity for genome repair after irradiation. Therefore, genome repair probably plays a bigger role than prevention of genome damage in making D. radiodurans radiation tolerant (7, 8). Indeed, some experimental evidence suggests that efficient DNA repair is solely responsible for the ability of D. radiodurans to withstand ionizing radiation. D. radiodurans DNA sustains the same amount of genome damage at high radiation doses as other bacteria, but unlike other bacteria, its damage is mended within hours (25). However, some recent evidence suggests that it is likely that prevention of DNA damage (reactive oxygen species ROS] scavenging) supplements DNA repair to make D. radiodurans ionizing radiation tolerant. It is worth noting that only about 20% of radiation-induced damage to the genome is due to the direct effect of irradiation (the rest is due to radiation-induced ROS) and that cellular extracts of D. radiodurans are more effective in scavenging ROS than Escherichia coli extracts when subjected to oxidative stress (43). Moreover, D. radiodurans has higher basal levels of some antioxidant enzymatic systems (catalase and superoxide dismutase), and disruption of superoxide dismutase (sodA) and catalase (katA) genes results in increased sensitivity of D. radiodurans to ionizing radiation. In addition D. radiodurans catalase is more resistant to inhibition by substrate H2O2 than bovine or Aspergillus niger catalase (17). Taken together, these experimental results suggest a significant contribution of antioxidant systems to the ability of D. radiodurans to withstand extreme ionizing radiation.While the contribution of some antioxidant enzymatic systems to the extremophilic nature of D. radiodurans has been extensively studied, the role of the thioredoxin system has not been investigated (40, 43). The thioredoxin system is composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and various cellular targets. The system is found in both prokaryotes and eukaryotes, and homologues of both TrxR and Trx have been isolated from many species. Trx proteins are low-molecular-mass proteins (12 kDa) that possess a highly conserved active site motif, WCGPC (27, 41). TrxR is a homodimeric enzyme and is a member of the family of pyridine nucleotide-disulfide oxidoreductase flavoenzymes. Each monomer possesses a flavin adenine dinucleotide (FAD) prosthetic group, a NADPH-binding site, and an active site comprising a redox-active disulfide. There are two distinct forms of this enzyme, as follows: low-molecular-mass TrxR (35 kDa), found in prokaryotes and some eukaryotes, and high-molecular-mass TrxR (55 kDa), found in eukaryotes (41). The two types of TrxR proteins have some differences in structure and mechanism. However, in both cases, reducing equivalents are transferred from NADPH to TrxR, from TrxR to Trx, and finally, from Trx to various cellular proteins (29, 41). Trx targets include proteins which take part in the scavenging of ROS-like thioredoxin-dependent thiol peroxidase (29). The thioredoxin system is thus an important antioxidant enzymatic system.In this study we report the expression, purification, and biochemical characterization of the main components of the D. radiodurans thioredoxin system. In addition, the structural characterization of D. radiodurans TrxR is reported.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号