Retrograde Axon Transport of Herpes Simplex Virus and Pseudorabies Virus: a Live-Cell Comparative Analysis |
| |
Authors: | Sarah Elizabeth Antinone Gregory Allan Smith |
| |
Affiliation: | Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 |
| |
Abstract: | Upon entry, neuroinvasive herpesviruses traffic from axon terminals to the nuclei of neurons resident in peripheral ganglia, where the viral DNA is deposited. A detailed analysis of herpes simplex virus type 1 (HSV-1) transport dynamics in axons following entry is currently lacking. Here, time lapse fluorescence microscopy was used to compare the postentry viral transport of two neurotropic herpesviruses: HSV-1 and pseudorabies virus (PRV). HSV-1 capsid transport dynamics were indistinguishable from those of PRV and did not differ in neurons of human, mouse, or avian origin. Simultaneous tracking of capsids and tegument proteins demonstrated that the composition of actively transporting HSV-1 is remarkably similar to that of PRV. This quantitative assessment of HSV-1 axon transport following entry demonstrates that HSV-1 and PRV share a conserved mechanism for postentry retrograde transport in axons and provides the foundation for further studies of the retrograde transport process.Herpes simplex virus type 1 (HSV-1) and the veterinary herpesvirus pathogen pseudorabies virus (PRV) establish latent infections within the peripheral nervous systems (PNS) of their hosts. Neurotropic herpesviruses gain access to the PNS at nerve endings present in infected skin or mucosal tissue. Upon entry at the nerve terminal, viral particles are transported in axons toward the neuronal cell body to ultimately deposit the viral genome into the nucleus. This process is referred to as retrograde transport and is critical for the establishment of latency. Following reactivation, progeny viral particles travel anterogradely from the ganglia toward the nerve terminals, resulting in reinfection of the dermis or other innervated tissues. Reactivated infection can manifest in various forms, including asymptomatic virus shedding or mild focal lesions (herpes labialis), or less frequently in more-severe disease (herpes keratitis, encephalitis, and in the case of varicella-zoster virus, shingles).All herpesviruses consist of an icosahedral capsid that contains the viral genome surrounded by a layer of proteins known as the tegument, which is contained within a membrane envelope (33). HSV-1 and PRV capsids disassociate from the viral envelope (2, 13, 14, 22, 23, 25, 28, 30, 40) and several tegument proteins (13, 16, 21, 25) upon fusion-mediated entry into cells. However, following entry into epithelial cell lines, the VP1/2 and UL37 tegument proteins are detected in association with cytosolic capsids of PRV by immunogold electron microscopy (16) and colocalize with HSV-1 capsids at the nuclear membrane by immunofluorescence microscopy (8). In primary sensory neurons, VP1/2 and UL37 are observed to be cotransported with PRV capsids during retrograde transport by time lapse fluorescence microscopy (21), and the kinetics of axon transport have been assessed (39).Although HSV-1 and PRV share similarities in their neurotropism in vivo (reviewed in reference 12), studies of axon transport have indicated possible mechanistic differences relevant to the underlying cell biology of neural transmission (reviewed in reference 10). As a result, a live-cell analysis comparing PRV and HSV-1 is needed to determine if axon transport mechanisms are conserved between the two neuroinvasive herpesvirus genera: Simplexvirus (HSV-1) and Varicellovirus (PRV). In this study, the retrograde transport process that delivers capsids to the nuclei of sensory neurons was compared for HSV-1 (strains KOS and F) and PRV (strain Becker). |
| |
Keywords: | |
|
|