首页 | 本学科首页   官方微博 | 高级检索  
     


CotE Binds to CotC and CotU and Mediates Their Interaction during Spore Coat Formation in Bacillus subtilis
Authors:Rachele Isticato  Assunta Pelosi  Maurilio De Felice  Ezio Ricca
Affiliation:Department of Structural and Functional Biology, Federico II University, Naples, Italy
Abstract:CotE is a morphogenic protein that controls the assembly of the coat, the proteinaceous structure that surrounds and protects the spore of Bacillus subtilis. CotE has long been thought to interact with several outer coat components, but such interactions were hypothesized from genetic experiment results and have never been directly demonstrated. To study the interaction of CotE with other coat components, we focused our attention on CotC and CotU, two outer coat proteins known to be under CotE control and to form a heterodimer. We report here the results of pull-down experiments that provide the first direct evidence that CotE contacts other coat components. In addition, coexpression experiments demonstrate that CotE is needed and sufficient to allow formation of the CotC-CotU heterodimer in a heterologous host.The spore of Bacillus subtilis is a dormant cell, resistant to harsh conditions and able to survive extreme environmental conditions (25). Spores are produced in a sporangium that consists of an inner cell, the forespore, that will become the mature spore and an outer cell, the mother cell, that will lyse, liberating the mature spore (18, 26). Resistance of the spore to noxious chemicals, lytic enzymes, and predation by soil protozoans is in part due to the coat, a complex, multilayered structure of more than 50 proteins that encases the spore (5, 8, 13). Proteins that constitute the coat are produced in the mother cell and deposited around the outer membrane surface of the forespore in an ordered manner (8).A small subset of coat proteins have a regulatory role on the formation of the coat. Those proteins, referred to as morphogenic factors, do not affect the synthesis of the coat components but drive their correct assembly outside of the outer forespore membrane (8). Within this subset of regulatory coat proteins, SpoIVA and CotE play a crucial role. SpoIVA (6, 20, 23) is assembled into the basement layer of the coat and is anchored to the outer membrane of the forespore through its C terminus that contacts SpoVM, a small, amphipathic peptide embedded in the forespore membrane (16, 21, 22). A spoIVA-null mutation impairs the assembly of the coat around the forming spore, and as a consequence, coat material accumulates in the mother cell cytoplasm (23).CotE (28) assembles into a ring and surrounds the SpoIVA basement structure. The inner layer of the coat is then formed between the SpoIVA basement layer and the CotE ring by coat components produced in the mother cell that infiltrate through the CotE ring, while the outer layer of the coat is formed outside of CotE (6). However, not all CotE molecules are assembled into the ring-like structure, and CotE molecules are also found in the mother cell cytoplasm, at least up to 8 h after the start of sporulation (3). CotE was first identified as a morphogenic factor in a seminal study in which an ultrastructural analysis indicated that a cotE-null mutation prevented formation of the electron-dense outer layer of the coat while it did not affect inner coat formation (28). A subsequent mutagenesis study has revealed that CotE has a modular structure with a C-terminal domain involved in directing the assembly of various coat proteins, an internal domain involved in the targeting of CotE to the forespore, and a N-terminal domain that, together with the internal domain, directs the formation of CotE multimers (17). More recently, formation of CotE multimers has been also confirmed by a yeast two-hybrid approach (14). In a global study of protein interactions in the B. subtilis coat, performed by a fluorescence microscopy analysis of a collection of strains carrying cot-gfp fusions, CotE has been proposed to interact with most outer coat components (12).From those and other studies, the interactions of CotE with coat structural components have been exclusively inferred on the basis of genetic experiment results, i.e., cotE mutants that failed to assemble one or more coat components. Evidence of a direct interaction between CotE and another coat component has never been provided. We addressed this issue by using as a model two coat components, CotC and CotU, known to be controlled by CotE and to form a heterodimer (10, 28).CotC is an abundant, 66-amino-acid protein known to assemble in the outer coat in various forms: a monomer of 12 kDa, a homodimer of 21 kDa, and two less abundant forms of 12.5 and 30 kDa, probably due to posttranslational modifications of CotC (9). CotU is a structural homolog of CotC of 86 amino acids. The two proteins, which share an almost identical N terminus and a less conserved C terminus, interact, originating the formation of a heterodimer of 23 kDa (10). Heterodimer formation most likely requires a B. subtilis-specific factor since it does not occur in Escherichia coli or Saccharomyces cerevisiae (10). CotC and CotU are synthesized in the mother cell compartment of the sporulating cell but do not accumulate there since they are immediately assembled around the forming spore (10). In a strain carrying a cotE-null mutation, CotC and CotU, together with all other outer coat components, do not assemble around the forming spore (10). CotC and CotU are also dependent on CotH, an additional morphogenic factor involved in coat formation (9). A cotH-null mutation prevents CotC and CotU assembly in the coat as well as their accumulation in the mother cell cytoplasm (10). Since a mutation causing cotH overexpression allows CotC and CotU accumulation in the mother cell cytoplasm (1), it has been proposed that CotH acts by stabilizing CotC and CotU in the mother cell cytoplasm (1, 10).Here we provide the first direct evidence that CotE interacts with two other coat components, CotC and CotU, and show that CotE is essential and sufficient to mediate CotC-CotU interaction to form a heterodimer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号