首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation-induced biomimetic modification of dual-layered nano/microfibrous scaffolds for vascular tissue engineering
Authors:Young Min Shin  Jong-Young Lim  Jong-Seok Park  Hui-Jeong Gwon  Sung In Jeong  Youn-Mook Lim
Affiliation:1. Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
Abstract:One of the interesting strategies for developing the artificial blood vessels is to generate multi-layered scaffolds for mimicking the structure of native blood vessels such as the intima, media, and adventitia. In this study, we prepared dual-layered poly(L-lactide-co-?-caprolactone) (PLCL) scaffolds with micro- and nanofibers as a basic construct of the vessel using electrospinning methods, which was functionalized using a gelatin through acrylic acid (AAc) grafting by γ-ray irradiation. Based on the microfibrous platform (fiber diameter 5 μm), the thickness of the nanofibrous layer (fiber diameter 700 nm) was controlled from 1.1 ± 0.8 to 32.2 ± 1.7 μm, and the mechanical property of the scaffolds was almost maintained despite the increase in thickness of the nanofibrous layer. The successful AAc graft by γ-ray irradiation could allow the gelatin immobilization on the scaffolds. The proliferation of smooth muscle cells (SMC) on the scaffolds toward a microfibrous layer was approximately 1.3-times greater than in the other groups, and the infiltration was significantly increased, presenting a wide cell distribution in the cross-section. In addition, human umbilical vein endothelial cell (HUVEC) adhesion toward nanofibrous layer was well-managed over the entire surface, and the accelerated proliferation was observed on the gelatin-functionalized scaffolds presenting the well-organized gap-junctions. Therefore, our biomimetic dual-layered scaffolds may be the alternative tools for replacing the damaged blood vessels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号