首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113
Authors:Smith L M  Tola E  deBoer P  O'Gara F
Institution:Biomerit Research Laboratory, Department of Microbiology, National University of Ireland, Cork, Ireland.
Abstract:Pseudomonas fluorescens F113 produces antifungal metabolites that protect the roots of sugarbeet from the fungus Pythium ultimum . The phytopathogen, in turn, has the ability to downregulate the expression of genes fundamental to the rhizosphere competence of the bacterial strain. This paper describes the characterization of two of these genes, which were isolated by screening a mini-Tn 5  :: lacZ mutant bank for differential expression of β-galactosidase in the presence of P. ultimum . In order to identify the genes affected in reporter mutants SF3 and SF5, the transposons and flanking regions were cloned. Sequence analysis of the regions flanking the transposons in SF3 revealed that mini-Tn 5  :: lacZ had inserted into a tRNAIle gene, which maps within a ribosomal RNA ( rrn ) operon. In SF5, the transposon inserted between the promoter of a second rrn operon and a gene encoding a 16S rRNA. Southern blot analysis demonstrated that there are five rrn operons in P. fluorescens F113 and that the transposons in SF3 and SF5 had inserted into two different operons. Further characterization of these mutants suggests that their reduced rhizosphere competence is not the result of reduced viability in the short term but may be accounted for partly by reduced growth rates under conditions that support rapid growth. Analysis of lacZ expression in the reporter mutants indicate that the marked rrn operons are regulated differently, suggesting different physiological roles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号