首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Elucidation of the complete Azorhizobium nicotinate catabolism pathway.
Authors:C L Kitts  J P Lapointe  V T Lam  and R A Ludwig
Institution:Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064.
Abstract:A complete pathway for Azorhizobium caulinodans nicotinate catabolism has been determined from mutant phenotype analyses, isolation of metabolic intermediates, and structural studies. Nicotinate serves as a respiratory electron donor to O2 via a membrane-bound hydroxylase and a specific c-type cytochrome oxidase. The resulting oxidized product, 6-hydroxynicotinate, is next reduced to 1,4,5,6-tetrahydro-6-oxonicotinate. Hydrolytic ring breakage follows, with release of pyridine N as ammonium. Decarboxylation then releases the nicotinate C-7 carboxyl group as CO2, and the remaining C skeleton is then oxidized to yield glutarate. Transthioesterification with succinyl coenzyme A (succinyl-CoA) yields glutaryl-CoA, which is then oxidatively decarboxylated to yield crotonyl-CoA. As with general acyl beta oxidation, L-beta-hydroxybutyryl-CoA, acetoacetyl-CoA, and finally two molecules of acetyl-CoA are produced. In sum, nicotinate is catabolized to yield two CO2 molecules, two acetyl-CoA molecules, and ammonium. Nicotinate catabolism stimulates Azorhizobium N2 fixation rates in culture. Nicotinate catabolism mutants still able to liberate pyridine N as ammonium retain this capability, whereas mutants so blocked do not. From, mutant analyses and additional physiological tests, N2 fixation stimulation is indirect. In N-limited culture, nicotinate catabolism augments anabolic N pools and, as a consequence, yields N2-fixing cells with higher dinitrogenase content.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号