首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation
Authors:G Prezioso  J S Hong  G K Kerwar  H R Kaback
Affiliation:The Roche Institute of Molecular Biology, Nutley, New Jersey 07110 USA
Abstract:Amino acid and β-galactoside transport activity catalyzed by whole cells and membrane vesicles prepared from an Escherichia coli mutant uncoupled for oxidative phosphorylation is comparable to the activity of analogous preparations from the parent strain. Valinomycin-induced rubidium uptake is also similar in membrane vesicles prepared from wild-type and mutant cells. The properties of the transport systems in mutant vesicles are the same as those of wild-type vesicles with respect to electron donors which stimulate transport, and with respect to inhibition by anoxia, cyanide, and 2,4-dinitrophenol.Magnesium ion markedly stimulates the ATPase activity of wild-type membrane vesicles and ethylenediaminetetraacetate markedly inhibits. However, these compounds have relatively slight effects on either the initial rate or extent of transport. Dicyclohexylcarbodiimide does not inhibit respiration-dependent transport despite inhibition of the calcium, magnesium-activated ATPase activity of wild-type vesicles.These results confirm earlier observations indicating that oxidative phosphorylation is not involved in respiration-linked active transport.
Keywords:TMG  DNP  2,4-dinitrophenol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号