首页 | 本学科首页   官方微博 | 高级检索  
     


Intermittent methionine restriction reduces IGF‐1 levels and produces similar healthspan benefits to continuous methionine restriction
Authors:Jason D. Plummer  Jay E. Johnson
Affiliation:1. Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring New York, USA
Abstract:A sustained state of methionine restriction (MR) dramatically extends the healthspan of several model organisms. For example, continuously methionine‐restricted rodents have less age‐related pathology and are up to 45% longer‐lived than controls. Promisingly, MR is feasible for humans, and studies have suggested that methionine‐restricted individuals may receive similar benefits to rodents. However, long‐term adherence to a methionine‐restricted diet is likely to be challenging for many individuals. Prompted by this, and the fact that intermittent variants of other healthspan‐extending interventions (i.e., intermittent fasting and the cyclic ketogenic diet) are just as effective, if not more, than their continuous counterparts, we hypothesized that an intermittent form of MR might produce similar healthspan benefits to continuous MR. Accordingly, we developed two increasingly stringent forms of intermittent MR (IMR) and assessed whether mice maintained on these diets demonstrate the beneficial metabolic changes typically observed for continuous MR. To the best of our knowledge, we show for the first time that IMR produces similar beneficial metabolic effects to continuous MR, including improved glucose homeostasis and protection against diet‐induced obesity and hepatosteatosis. In addition, like continuous MR, IMR confers beneficial changes in the plasma levels of the hormones IGF‐1, FGF‐21, leptin, and adiponectin. Together, our findings demonstrate that the more practicable intermittent form of MR produces similar healthspan benefits to continuous MR, and thus may represent a more appealing alternative to the classical intervention.
Keywords:aging, intermittent, longevity, lifespan, metabolism, obesity, IGF‐  1, mice
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号