首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallin {gamma}B-I4F mutant protein binds to {alpha}-crystallin and affects lens transparency
Authors:Liu Haiquan  Du Xin  Wang Meng  Huang Qingling  Ding Linlin  McDonald Hayes W  Yates John R  Beutler Bruce  Horwitz Joseph  Gong Xiaohua
Affiliation:School of Optometry and Vision Science Program, University of California, Berkeley, California 94720, USA.
Abstract:A new mouse mutant line, Clapper, identified from N-ethyl-N-nitrosurea (ENU)-mutagenized mice, develops a dominant lamellar cataract. The cataract blocks the image of retinal fundus and transmits a fuzzy fluorescein image of retinal vasculature during angiography. The cataractous lens opacity decreases as the mice age. The Clapper mutation has been identified to be a missense mutation of the gammaB-crystallin gene that replaces the 4th isoleucine residue with a phenylalanine (gammaB-I4F). Unlike wild type gammaB, the gammaB-I4F mutant protein binds to alpha-crystallin to form high molecular weight complexes in vivo and in vitro. Circular dichroism measurements indicate that gammaB-I4F protein is less stable than wild type gammaB at high temperature. Darkly stained aggregates, enlarged interfiber spaces, and disorganized and smaller inner mature fibers were found in the regions of the cataract in homozygous Clapper mutant lenses. Thus, the lamellar cataract is likely due to the light-scattering effects of the enlarged interfiber spaces and protein aggregates caused by gammaB-I4F mutant proteins interacting with alpha-crystallin in the lens.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号