首页 | 本学科首页   官方微博 | 高级检索  
     


Automated analysis of the cytokinesis-block micronucleus assay for radiation biodosimetry using imaging flow cytometry
Authors:M. A. Rodrigues  L. A. Beaton-Green  B. C. Kutzner  R. C. Wilkins
Affiliation:1. Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Rd., Ottawa, ON, K1A 1C1, Canada
2. Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
Abstract:The cytokinesis-block micronucleus (CBMN) assay is employed in biological dosimetry to determine the dose of radiation to an exposed individual from the frequency of micronuclei (MN) in binucleated lymphocyte cells. The method has been partially automated for the use in mass casualty events, but it would be advantageous to further automate the method for increased throughput. Recently, automated image analysis has been successfully applied to the traditional, slide-scoring-based method of the CBMN assay. However, with the development of new technologies such as the imaging flow cytometer, it is now possible to adapt this microscope-based assay to an automated imaging flow cytometry method. The ImageStreamX is an imaging flow cytometer that has adequate sensitivity to quantify radiation doses larger than 1 Gy while adding the increased throughput of traditional flow cytometry. The protocol and analysis presented in this work adapts the CBMN assay for the use on the ImageStreamX. Ex vivo-irradiated whole blood samples cultured for CBMN were analyzed on the ImageStreamX, and preliminary results indicate that binucleated cells and MN can be identified, imaged and enumerated automatically by imaging flow cytometry. Details of the method development, gating strategy and the dose response curve generated are presented and indicate that adaptation of the CBMN assay for the use with imaging flow cytometry has potential for high-throughput analysis following a mass casualty radiological event.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号