Freezing damage and frost tolerance of the photosynthetic apparatus studied with isolated mesophyll protoplasts of Valerianella locusta L. |
| |
Authors: | Susanne Rumich-Bayer G. Heinrich Krause |
| |
Affiliation: | (1) Botanisches Institut der Universität Düsseldorf, Universitätsstraße 1, D-4000 Dusseldorf 1, Germany, FRG |
| |
Abstract: | Mesophyll protoplasts were isolated from unhardened and cold-acclimated leaves of Valerianella locusta L. and subjected to freeze-thaw treatment. To evaluate the extent and course of freezing injury, photosynthetic reactions of whole protoplasts and of free thylakoid membranes, liberated from protoplasts by osmotic lysis, were measured. In addition, the integrity of the protoplasts was determined by microscopy. The results reveal an increased frost tolerance of protoplasts isolated from acclimated leaves with respect to all parameters measured. CO2-dependent O2 evolution (representing net photosynthetic CO2 fixation of protoplasts) was the most freezing-sensitive reaction; its inhibition due to freeze-thaw treatment of protoplasts was neither correlated with disintegration of the plasma membrane, nor was it initiated by inactivation of the thylakoid membranes. The frost-induced decline of protoplast integrity was not closely correlated to thylakoid damage either. Freezing injury of the thylakoid membranes was manifested by inhibition of photosynthetic electron transport and photophosphorylation. Both photosystems were affected by freezing and thawing with strongest inhibition occurring in the water-oxidation system or at the oxidizing site of photosystem II. Photophosphorylation responded more sensitively to freezing stress than electron transport, although uncoupling (increased permeability of the thylakoid membranes to protons) was not a conspicuous effect. The data are discussed in relation to freezing injury in leaves and seem to indicate that frost damage in vivo is initiated at multiple sites.Abbreviations Chl chlorphyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Hepes 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid - MES 2-(N-morpholino)-ethanesulfonic acid - PS I photosystem I - PS II photosystem II |
| |
Keywords: | carbon dioxide fixation freezing stress photophosphorylation photosynthetic electron transport protoplasts Valerianella locusta |
本文献已被 SpringerLink 等数据库收录! |
|