首页 | 本学科首页   官方微博 | 高级检索  
     


Left-handed Z-DNA and intramolecular triplex formation at the site of an unequal sister chromatid exchange
Authors:A Weinreb  D A Collier  B K Birshtein  R D Wells
Affiliation:Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.
Abstract:An unequal sister chromatid exchange (USCE) in the mouse myeloma cell line MPC-11 between 3' regions of the C gamma 2a and C gamma 2b heavy chain genes results in duplication of the C gamma 2a heavy chain gene and generation of a novel recombination joint. The USCE occurs between (TC)n tracts adjacent to alternating purine-pyrimidine tracts. We have investigated the capacity of both the donor regions and the recombinant product involved in this event to adopt left-handed Z-DNA and intramolecular triplexes. The results of chemical probing with diethylpyrocarbonate and osmium tetroxide at the base pair level demonstrate that under the influence of negative supercoiling the alternating purine-pyrimidine regions of these plasmids can adopt Z-DNA at neutral pH, and the oligopurine.oligopyrimidine (pur.pyr) regions of these regions can adopt intramolecular triplexes at low pH (less than or equal to pH 6.0). At intermediate pH values, mixtures of both structures are present. Increasing the negative superhelical density of the plasmid does not increase the amount of triplex present at neutral pH indicating that the presence of long Z-DNA segments adjacent to pur.pyr tract prevents intramolecular triplex formation. In summary, we conclude that the sequences involved in the USCE can form either an intramolecular triplex in the (TC)n tract or Z-DNA in the alternating purine-pyrimidine tract and that Z-DNA will predominate under physiological conditions. The presence of segments which adopt Z-DNA at a site of USCE suggests that formation of this structure may enhance recombination between adjacent pur.pyr tracts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号