首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing
Authors:Denton Jerod S  McCann F V  Leiter J C
Institution:Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
Abstract:Elevated levels of carbon dioxide increase lung ventilation in Helix aspersa. The hypercapnic response originates from a discrete respiratory chemosensory region in the dorsal subesophageal ganglia that contains CO2-sensitive neurons. We tested the hypothesis that pH-dependent inhibition of potassium channels in neurons in this region mediated the chemosensory response to CO2. Cells isolated from the dorsal subesophageal ganglia retained CO2 chemosensitivity and exhibited membrane depolarization and/or an increase in input resistance during an acid challenge. Isolated somata expressed two voltage-dependent potassium channels, an A-type and a delayed-rectifier-type channel (IKA and IKDR). Both conductances were inhibited during hypercapnia. The pattern of voltage dependence indicated that IKA was affected by extracellular or intracellular pH, but the activity of IKDR was modulated by extracellular pH only. Application of inhibitors of either channel mimicked many of the effects of acidification in isolated cells and neurons in situ. We also detected evidence of a pH-sensitive calcium-activated potassium channel (IKCa) in neurons in situ. The results of these studies support the hypothesis that IKA initiates the chemosensory response, and IKDR and IKCa prolong the period of activation of CO2-sensitive neurons. Thus multiple potassium channels are inhibited by acidosis, and the combined effect of pH-dependent inhibition of these channels enhances neuronal excitability and mediates CO2 chemosensory responses in H. aspersa. We did not find a single "chemosensory channel," and the chemosensitive channels that we did find were not unique in any way that we could detect. The protein "machinery" of CO2 chemosensitivity is probably widespread among neurons, and the selection process whereby a neuron acts or does not act as a respiratory CO2 chemosensor probably depends on the resting membrane potential and synaptic connectivity. carbon dioxide
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号