首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Specificity of natural and artificial substrates for human Cdc25A
Authors:Rudolph J  Epstein D M  Parker L  Eckstein J
Institution:Mitotix, Inc., Cambridge, Massachusetts, USA. rudolph@biochem.duke.edu
Abstract:Cdc25A is a dual-specific protein phosphatase involved in the regulation of the kinase activity of Cdk-cyclin complexes in the eukaryotic cell cycle. To understand the mechanism of this important regulator, we have generated highly purified biochemical reagents to determine the kinetic constants for human Cdc25A with respect to a set of peptidic, artificial, and natural substrates. Cdc25A and its catalytic domain (dN25A) demonstrate very similar kinetics toward the artificial substrates p-nitrophenyl phosphate (k(cat)/K(m) = 15-25 M(-1) s(-1)) and 3-O-methylfluorescein phosphate (k(cat)/K(m) = 1.1-1.3 x 10(4) M(-1) s(-1)). Phospho-peptide substrates exhibit extremely low second-order rate constants and a flat specificity profile toward Cdc25A and dN25A (k(cat)/K(m) = 1 to 10 M(-1) s(-1)). In contrast to peptidic substrates, Cdc25A and dN25A are highly active phosphatases toward the natural substrate, T14- and Y15-bis-phosphorylated Cdk2/CycA complex (Cdk2-pTpY/CycA) with k(cat)/K(m) values of 1.0-1.1 x 10(6) M(-1) s(-1). In the context of the Cdk2-pTpY/CycA complex, phospho-threonine is preferred over phospho-tyrosine by more than 10-fold. The highly homologous catalytic domain of Cdc25c is essentially inactive toward Cdk2-pTpY/CycA. Taken together these data indicate that a significant degree of the specificity of Cdc25 toward its Cdk substrate resides within the catalytic domain itself and yet is in a region(s) that is outside the phosphate binding site of the enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号