首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthetic abilities of Euglena chloroplasts in darkness
Authors:B Gómez-Silva  J A Schiff
Abstract:Protein synthesis, normally a light-dependent process in isolated mature chloroplasts of Euglena gracilis var. bacillaris will take place in darkness if ATP and Mg2+ (ATP/Mg) are supplied. Either 5 or 10 mM ATP plus 15 mM MgCl2 are optimal and rates equal to those in the light can be obtained. Since ATP and Mg2+ are not stoichiometrically related, and since the optimal Mg2+ concentration is similar to that which stabilizes chloroplast ribosomes in vitro, it is suggested that the chloroplast is freely permeable to Mg2+ under these conditions. Protein synthesis under these conditions is not inhibited appreciably by DCMU, FCCP, cycloheximide, or by the addition of ribonuclease, but is highly sensitive to chloramphenicol. Carbon dioxide fixation is also a light-dependent process in isolated mature chloroplasts from Euglena, but addition of ATP (5 mM) and fructose bisphosphate (5 mM) plus aldolase (1.0 unit/ml) (fructose-1,6-bisphosphate/aldolase) yields CO2 fixation rates in darkness that are 43% of those normally obtained in the light. Mg2+ higher than 1.0 mM (e.g., 16 mM) is somewhat inhibitory. Chlorophyll synthesis from 5-aminolevulinate in 36 h developing chloroplasts from Euglena is also light-dependent, but addition of ATP/Mg and fructose-1,6-bis-phosphate/aldolase in darkness brings about the accumulation of a compound having the same RF on chromatography as protochlorophyllide from Barley; a subsequent brief illumination of the chloroplasts converts this compound to a compound with the RF of chlorophyll. Thus Euglena chloroplasts supplied with appropriate additions can carry out protein synthesis, carbon dioxide fixation and most of chlorophyll synthesis in darkness. This versatility is appropriate in photosynthetic organelles isolated from photo-organotrophic cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号