首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Variability in Circadian Phase and Amplitude Estimates Derived from Sequential Constant Routines
Abstract:Both the constant routine (CR) and the dim light melatonin onset have been suggested as reliable methods to determine circadian phase from a single circadian cycle. However, both techniques lack published studies quantifying the intercycle variability in their phase resolution. To address this question eight healthy male subjects participated in two CRs, 7 days apart. Circadian phase was determined using 3-min samples of core body temperature and two hourly urinary sulphatoxy melatonin excretion rates. Phase and amplitude were estimated using simple (24 h) and complex (24 + 12 h) cosinor models of temperature data and the onset, offset, and a distance-weighted-least-squares (DWLS) fitted acrophase for the melatonin metabolite. The variability in phase estimates was measured using the mean absolute difference between successive CRs. Using the simple 24 h model of temperature data, the mean absolute phase difference was 51 min (SD = 35 min). Using the complex model, the mean absolute phase difference was 62 min (SD = 35 min). Using the DWLS fitted acrophase for the melatonin metabolite, the mean absolute phase difference between CR1 and CR2 was 40 min (SD = 26 min). The results indicate that for CRs a week apart, the mean absolute difference in an individual's phase estimate can vary by 40-60 min depending on the choice of dependent measure and analytic technique. In contrast to the intraindi-vidual variability, the group results showed considerably less variability. The mean algebraic difference between CRs, using temperature- or melatonin-derived estimates, was less than 5 min, and well within the range of normal measurement error.
Keywords:Circadian rhythm  Circadian phase  Circadian amplitude  Core body temperature  Melatonin  Constant routine  Sleep-wake disorder
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号