首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Social Cues Accelerate Reentrainment of Circadian Rhythms in Diurnal Female Octodon Degus (Rodentia-Octodontidae)
Abstract:Previous studies paired diurnal Octodon degus undergoing/phase advances (phase-shifters) with those entrained to a light-dark (LD) cycle (donors). Results included opposite outcomes of male and female social cues on resynchronization following 6-h advances in females, but no effect of social cues on male resynchronization. The first experiment determined if social cues could influence resynchronization rates of circadian rhythms in male and female degus following a 6-h phase delay of the LD cycle. Female phase-shifters resynchronized temperature and activity rhythms 20–35% faster when housed with either entrained (donor) females or males compared with females housed alone. No significant differences in resynchronization rate for phase-shifting males existed between test conditions. This experiment extends the previous finding that females, but not males, respond strongly to donor cues to increase resynchronization rates in the presence of light. A second experiment determined that accelerated resynchronization rates of female phase-shifters housed with female donors were due to social cues directly affecting the circadian system rather than the result of social masking. On the day following resynchronization with or without a female donor present, phaseshifters were transferred individually to constant conditions (DD). The temperature and activity rhythms of female phase-shifters free-ran from the point at which resynchronization occurred for both the control and experimental females. Thus, social cues accelerate true reentrainment, not masking, of the circadian system in the presence of a LD cycle in female degus. Donor cues from females enhance reentrainment after advances and delays, but the effect of male donor cues is dependent on the direction of the phase shift.
Keywords:Masking  Circadian  Activity  Temperature  Sex difference
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号