Abstract: | In studies and assessments of human beings done in natural settings, it is assumed that the period τ of circadian rhythms, including ones of systolic (SBP) and diastolic (DBP) blood pressure, is equal to 24 hours. To test this hypothesis, SBP and DBP rhythms were studied in 112 medication-free, non-hospitalized subjects (62 males, 47.1 + 2.0 years [χ ± SEM], and 50 females, 54.5 ± 2.1 years) by 48h ambulatory blood pressure monitoring (ABPM). Of these, 26 were hypertensive (diurnal SBP> 140 mmHg and diurnal DBP> 90 mmHg) and 86 normotensive. All subjects were synchronized by their habitual daytime activities from ?08:00h to ?23:00h ± lh and by sleep at night. The BP was assessed at 15-minute intervals during a continuous 48h span using a Spacelabs model #90207 ABPM. The time series data of each subject were individually evaluated by power spectra analysis for the prominent x of the SBP and DBP rhythms. The prominent X differed from 24 hours in 22/112 subjects for SBP and in 16/112 subjects for DBP. Generally, in these individuals the τ was less than 24 hours. The occurrence of non-24h τ's was more frequent in hypertensive than normotensive subjects; the difference between the groups in the distribution of the prominent τ's by class (τ = 24h, >=12, 12h<24h, etc.) was statistically significant (χ2 test =19.1; p < 0.001). No difference in the distribution of x's of blood pressure was detected according to the subject's age and gender. These findings suggest that ABPM done only for a duration of 24h may be too short to characterize accurately the features of the day-night variation in human BP, including the precise period of its rhythm. (Chronobiology International, 14(3), 307–317, 1997) |