首页 | 本学科首页   官方微博 | 高级检索  
     


Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species
Authors:Kotamraju S  Konorev E A  Joseph J  Kalyanaraman B
Affiliation:Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Abstract:Doxorubicin (DOX) is a broad spectrum anthracycline antibiotic used to treat a variety of cancers. Redox activation of DOX to form reactive oxygen species has been implicated in DOX-induced cardiotoxicity. In this work we investigated DOX-induced apoptosis in cultured bovine aortic endothelial cells and cardiomyocytes isolated from adult rat heart. Exposure of bovine aortic endothelial cells or myocytes to submicromolar levels of DOX induced significant apoptosis as measured by DNA fragmentation and terminal deoxynucleotidyltransferase-mediated nick-end labeling assays. Pretreatment of cells with 100 microm nitrone spin traps, N-tert-butyl-alpha-phenylnitrone (PBN) or alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) dramatically inhibited DOX-induced apoptosis. Ebselen (20-50 microm), a glutathione peroxidase mimetic, also significantly inhibited apoptosis. DOX (0.5-1 microm) inactivated mitochondrial complex I by a superoxide-dependent mechanism. PBN (100 microm), POBN (100 microm), and ebselen (50 microm) restored complex I activity. These compounds also inhibited DOX-induced caspase-3 activation and cytochrome c release. PBN and ebselen also restored glutathione levels in DOX-treated cells. We conclude that nitrone spin traps and ebselen inhibit the DOX-induced apoptotic signaling mechanism and that this antiapoptotic mechanism may be linked in part to the inhibition in formation or scavenging of hydrogen peroxide. Therapeutic strategies to mitigate DOX cardiotoxicity should be reexamined in light of these emerging antiapoptotic mechanisms of antioxidants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号