首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ethylenesulfide as a useful agent for incorporation into the biopolymer chitosan in a solvent-free reaction for use in cation removal
Authors:Kaline S Sousa  Edson C Silva Filho  Claudio Airoldi  
Institution:aInstitute of Chemistry, University of Campinas, PO Box 6154, 13084-971 Campinas, São Paulo, Brazil;bQuímica, Universidade Federal do Piauí, 64900-000, Bom Jesus, Piauí, Brazil
Abstract:Chitosan (Ch) was chemically modified with ethylenesulfide (Es) under solvent-free conditions to give (ChEs), displaying a high content of thiol groups due to opening of the three member cyclic reagent. Elemental analysis showed a decrease in nitrogen content. This result indicated the incorporation of two ethylenesulfide molecules for each unit of the polymeric structure of the precursor biopolymer. Infrared spectroscopy, thermogravimetry, and 13C NMR in the solid state demonstrated the effectiveness of the reaction, with signals at 30 ppm for ChEs due to the change in the methylene group environment. Divalent metal uptake by chemically modified biopolymer gave the order Cu > Ni > Co > Zn, reflecting the corresponding acidity of these cations in bonding to the sulfur and the basic nitrogen atoms available on the pendant chains. The equilibrium data were fitted to Freundlich, Temkin, and Langmuir models. The maximum monolayer adsorption capacity for the cations was found to be 1.54 ± 0.02, 1.25 ± 0.03, 1.13 ± 0.01, and 0.83 ± 0.03 mmol g−1, respectively. The Langmuir model best explained the cation–sulfur bond interactions at the solid–liquid interface. The thermodynamics for these interactions gave exothermic enthalpic values of −43.02 ± 0.03, −28.72 ± 0.02, −26.27 ± 0.04, and −17.32 ± 0.02 kJ mol−1, respectively. The spontaneity of the systems is given by negative Gibbs free energies of −31.2 ± 0.1, −32.7 ± 0.1, −31.7 ± 0.1, and −32.2 ± 0.1 kJ mol−1, respectively, in spite of the unfavorable negative entropic values of −39 ± 1, −13 ± 1, −18 ± 1, and −49 ± 1 J K−1 mol−1 due to solvent ordering in the course of complexation. This newly synthesized biopolymer is presented as a chemically useful material for cation removal from aqueous solution.
Keywords:Chitosan  Solvent-free reaction  Thiol group  Adsorption  Thermodynamic
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号