首页 | 本学科首页   官方微博 | 高级检索  
   检索      


PtdIns(3,4,5)P(3)-dependent and -independent roles for PTEN in the control of cell migration
Authors:Leslie Nick R  Yang Xuesong  Downes C Peter  Weijer Cornelis J
Institution:Division of Molecular Physiology, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom. n.r.leslie@dundee.ac.uk
Abstract:BACKGROUND: Phosphatase and tensin homolog (PTEN) mediates many of its effects on proliferation, growth, survival, and migration through its PtdIns(3,4,5)P(3) lipid phosphatase activity, suppressing phosphoinositide 3-kinase (PI3K)-dependent signaling pathways. PTEN also possesses a protein phosphatase activity, the role of which is less well characterized. RESULTS: We have investigated the role of PTEN in the control of cell migration of mesoderm cells ingressing through the primitive streak in the chick embryo. Overexpression of PTEN strongly inhibits the epithelial-to-mesenchymal transition (EMT) of mesoderm cells ingressing through the anterior and middle primitive streak, but it does not affect EMT of cells located in the posterior streak. The inhibitory activity on EMT is completely dependent on targeting PTEN through its C-terminal PDZ binding site, but can be achieved by a PTEN mutant (PTEN G129E) with only protein phosphatase activity. Expression either of PTEN lacking the PDZ binding site or of the PTEN C2 domain, or inhibition of PI3K through specific inhibitors, does not inhibit EMT, but results in a loss of both cell polarity and directional migration of mesoderm cells. The PTEN-related protein TPTE, which normally lacks any detectable lipid and protein phosphatase activity, can be reactivated through mutation, and only this reactivated mutant leads to nondirectional migration of these cells in vivo. CONCLUSIONS: PTEN modulates cell migration of mesoderm cells in the chick embryo through at least two distinct mechanisms: controlling EMT, which involves its protein phosphatase activity; and controlling the directional motility of mesoderm cells, through its lipid phosphatase activity.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号