首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of varied air velocity on sweating and evaporative rates during exercise.
Authors:W C Adams  G W Mack  G W Langhans  E R Nadel
Institution:John B. Pierce Laboratory, New Haven, Connecticut.
Abstract:This study was designed to determine the extent to which changes in the evaporative power of the environment (Emax) affect sweating and evaporative rates. Six male subjects undertook four 60-min bouts of cycle ergometer exercise at 56% maximal O2 uptake (VO2max).Emax was varied by differences in ambient temperature and airflow; two exercise bouts took place at 24 degrees C and two at 35 degrees C, with air velocity at < 0.2 and 3.0 m/s in both. Total sweat production was estimated from body weight loss, whereas whole body evaporative rate was measured continuously from a Potter beam balance. Body core temperature was measured continuously from a thermocouple in the esophagus (T(es)), with mean skin temperature (Tsk) computed each minute from thermocouples at eight sites. Total body sweat loss was significantly greater (P < 0.05) in the 0.2- than in the 3.0-m/s condition at both 24 and 35 degrees C. Tsk was higher (P < 0.05) in the still-air conditions at both temperatures, but final T(es) was significantly higher (P < 0.05) in still air only in the 35 degrees C environment. Thus the reduced Emax in still air caused a greater heat storage, thereby stimulating a greater total sweat loss. However, in part because of reduced skin wettedness, the slope of the sweat rate-to-T(es) relation at 35 degrees C in the 3.0-m/s condition was 118% that at 0.2 m/s (P < 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号