首页 | 本学科首页   官方微博 | 高级检索  
     


A preliminary study of the responsiveness to seasonal atmospheric and rainfall patterns of wash woodland species in the arid Richtersveld
Authors:Wand  Stephanie J.E.  Esler  Karen J.  Rundel  Philip W.  Sherwin  Heather W.
Abstract:Seasonal carbon and water relations were compared among seven tree or shrub wash woodland species in the winter rainfall desert of the Richtersveld National Park, South Africa. Plants were generally aseasonal with respect to gas exchange, but responsive to rainfall events with respect to water relations and phenology. Relatively narrow annual ranges in potential evapotranspiration due to the maritime influence could explain why these plants respond more to fluctuations in water acquisition potential than to evaporative demand. Two species were summer-deciduous, but one of them (Ozoroa concolor) responded to aseasonal summer rainfall by leafing out and flowering. These two species had high shoot xylem water potentials when in leaf. All other species were sclerophyllous evergreens with low water potentials, particularly the shallow-rooted shrub Zygophyllum prismatocarpum, and Boscia albitrunca which may have a different rooting pattern to the other phreatophytes. The latter species was also unique due to its high leaf nitrogen contents, photosynthetic rates and stomatal conductances, despite very low leaf water potentials. Leaf stable carbon isotope composition C13deltaC) varied between species (–22 to –27permil), but was lower than the mean for arid regions worldwide. The values indicated moderately high levels of water use efficiency, but a less conservative strategy in two species, including Boscia albitrunca. The affinities of these species to summer rainfall biomes, their apparent decline in the western arid regions in recent geological history following aridification, and their absence southwards in the winter rainfall regions, suggest that these wash species rely on sporadic summer rainfall events to some extent. They may be at risk if predicted increases in temperature and changes in rainfall patterns alter their effective moisture availability.
Keywords:Photosynthesis  Phreatophyte  Stable carbon isotope composition  Water relations  Winter rainfall desert
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号