首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gene amplification in a single cell cycle in Chinese hamster ovary cells
Authors:B D Mariani  R T Schimke
Abstract:We have employed Chinese hamster ovary cells synchronized by mitotic selection to study the replication and amplification of the dihydrofolate reductase gene. Using bromodeoxyuridine to differentially label newly replicated DNA, we show that the dihydrofolate reductase gene is replicated during the first 2 h of S phase, a time when, at most, 10% of the total genome has been replicated. We find that a 6-h inhibition of DNA synthesis by hydroxyurea beginning 2 h after the initiation of S phase markedly increases the frequency with which cells become resistant to a 100-fold increment in methotrexate. When DNA synthesis resumes following removal of the hydroxyurea, virtually all of the DNA replicated prior to inhibition, including the dihydrofolate reductase gene, is rereplicated. Analysis of the dihydrofolate reductase enzyme content of cells 24 h after treatment with hydroxyurea using the fluorescence-activated cell sorter reveals a subset of cells with elevated dihydrofolate reductase. It is this subset that contains additional copies of the dihydrofolate reductase gene and from which emerge highly methotrexate-resistant cells. We propose that the initial event of amplification is the rereplication of a variable, but relatively large, amount of the genome. As cells are subsequently placed under selection, a number of processes, including recombination events and loss of nonselected DNA sequences occur, resulting in what appears as differential gene amplification.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号