首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential docking of high-affinity peptide ligands to type A and B cholecystokinin receptors demonstrated by photoaffinity labeling
Authors:Dong Maoqing  Liu Guangming  Pinon Delia I  Miller Laurence J
Institution:Mayo Clinic Scottsdale, Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, Arizona 85259, USA.
Abstract:Type A and B cholecystokinin (CCK) receptors are highly homologous members of the class-I family of G protein-coupled receptors that bind CCK with high affinity. However, they have divergent structural specificities, with the type A receptor requiring seven carboxyl-terminal residues including a sulfated tyrosine and the type B receptor requiring only the carboxyl-terminal tetrapeptide. The aim of this work was to utilize affinity labeling to determine spatial approximations with photolabile p-benzoyl-l-phenylalanine (Bpa) residues sited at each end of CCK as docked at the type B CCK receptor, contrasting this with analogous work using similar probes docked at the type A receptor. Both probes were fully efficacious, potent agonists that stimulated intracellular calcium in receptor-bearing CHO-CCKBR cells (EC(50) values: Bpa(24) probe, 41 +/- 9 pM; Bpa(33) probe, 15 +/- 3.3 pM). They bound specifically, with high affinity (K(i) values: Bpa(24) probe, 0.60 +/- 0.17 nM; Bpa(33) probe, 0.58 +/- 0.11 nM). Cyanogen bromide cleavage of the covalently labeled receptor suggested the first extracellular loop as the region of labeling by each probe, distinct from the type A CCK receptor regions labeled using the same probes (third loop and amino-terminal tail, respectively). This was confirmed by subsequent enzymatic and chemical cleavage of labeled wild-type and mutant receptors. Sequential cycles of Edman degradation of labeled receptor fragments identified the specific residues within loop one labeled by each probe (Bpa(24) probe labeled Phe(122); Bpa(33) probe labeled Thr(119)). This provides a direct demonstration of distinct modes of docking the same high-affinity ligand to highly homologous receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号