首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular identification of species in Prunus sect. Persica (Rosaceae), with emphasis on evaluation of candidate barcodes for plants
Authors:Xu QUAN  Shi‐Liang ZHOU
Institution:1.(State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) ;2.(Graduate School of the Chinese Academy of Sciences, Beijing 100049, China)
Abstract:Abstract Species of Prunus L. sect. Persica are not only important fruit trees, but also popular ornamental and medicinal plants. Correct identification of seedlings, barks, or fruit kernels is sometimes required, but no reliable morphological characters are available. Nowadays, the technique of DNA barcoding has the potential to meet such requirements. In this study, we evaluated the suitability of 11 DNA loci (atpB‐rbcL, trnH‐psbA, trnLF, trnSG, atpFH, rbcL, matK, rpoB, rpoC1, nad1, and internal transcribed spacer ITS]) as candidate DNA barcodes for peaches, using samples from 38 populations, covering all the species in sect. Persica. On the whole, the primers worked well in this group and sequencing difficulties were met only in the case of ITS locus. Five loci (rbcL, matK, rpoB, rpoC, and nad1) have very low variation rates, whereas atpB‐rbcL, atpF‐H, trnH‐psbA, trnL‐F and trnSG show more variability. The most variable loci, atpB‐rbcL and trnH‐psbA, can distinguish three of the five species. Two two‐locus combinations, atpB‐rbcL+trnL‐F and atpB‐rbcL+atpF‐H, can resolve all five species. We also find that identification powers of the loci are method‐dependent. The NeighborNet method shows higher species identification power than maximum parsimony, neighbor joining, and unweighted pair group method with arithmetic mean methods.
Keywords:atpB‐rbcL  DNA barcode  Prunus sect  Persica  trnL‐F
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号