首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vitro activation of the rhesus macaque myeloid alpha-defensin precursor proRMAD-4 by neutrophil serine proteinases
Authors:Kamdar Karishma  Maemoto Atsuo  Qu Xiaoqing  Young Steven K  Ouellette André J
Institution:Departments of Pathology & Laboratory Medicine and §Microbiology and Molecular Genetics, School of Medicine, College of Health Sciences, University of California, Irvine, California 92697-4800
Abstract:Alpha-defensins are mammalian antimicrobial peptides expressed mainly by cells of myeloid lineage or small intestinal Paneth cells. The peptides are converted from inactive 8.5-kDa precursors to membrane-disruptive forms by post-translational proteolytic events. Because rhesus myeloid pro-alpha-defensin-4 (proRMAD-4((20-94))) lacks bactericidal peptide activity in vitro, we tested whether neutrophil azurophil granule serine proteinases, human neutrophil elastase (NE), cathepsin G (CG), and proteinase-3 (P3) have in vitro convertase activity. Only NE cleaved proRMAD-4((20-94)) at the native RMAD-4 N terminus to produce fully processed, bactericidal RMAD-4((62-94)). The final CG cleavage product was RMAD-4((55-94)), and P3 produced both RMAD-4((55-94)) and RMAD-4(57-94). Nevertheless, NE, CG, and P3 digests of proRMAD4 and purified RMAD-4((62-94)), RMAD-4((55-94)), and RMAD-4(57-94) peptides had equivalent in vitro bactericidal activities. Bactericidal peptide activity assays of proRMAD-4((20-94)) variants containing complete charge-neutralizing D/E to N/Q or D/E to A substitutions showed that (DE/NQ)-proRMAD-4((20-94)) and (DE/A)-proRMAD-4((20-94)) were as active as mature RMAD-4((62-94)). Therefore, proregion Asp and Glu side chains inhibit the RMAD-4 component of full-length proRMAD-4((20-94)), perhaps by a combination of charge-neutralizing and hydrogen-bonding interactions. Although native RMAD-4((62-94)) resists NE, CG, and P3 proteolysis completely, RMAD-4((62-94)) variants with disulfide pairing disruptions or lacking disulfide bonds were degraded extensively, evidence that the disulfide array protects the alpha-defensin moiety from degradation by the myeloid converting enzymes. These in vitro analyses support the conclusion that rhesus macaque myeloid pro-alpha-defensins are converted to active forms by serine proteinases that co-localize in azurophil granules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号