首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis
Authors:Pakhomova Svetlana  Bartlett Sue G  Augustus Alexandria  Kuzuyama Tomohisa  Newcomer Marcia E
Institution:Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and §Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Abstract:The fosfomycin resistance protein FomA inactivates fosfomycin by phosphorylation of the phosphonate group of the antibiotic in the presence of ATP and Mg(II). We report the crystal structure of FomA from the fosfomycin biosynthetic gene cluster of Streptomyces wedmorensis in complex with diphosphate and in ternary complex with the nonhydrolyzable ATP analog adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP), Mg(II), and fosfomycin, at 1.53 and 2.2 angstroms resolution, respectively. The polypeptide exhibits an open alphabetaalpha sandwich fold characteristic for the amino acid kinase family of enzymes. The diphosphate complex shows significant disorder in loops surrounding the active site. As a result, the nucleotide-binding site is wide open. Binding of the substrates is followed by the partial closure of the active site and ordering of the alpha2-helix. Structural comparison with N-acetyl-L-glutamate kinase shows several similarities in the site of phosphoryl transfer: 1) preservation of architecture of the catalytical amino acids of N-acetyl-L-glutamate kinase (Lys9, Lys216, and Asp150 in FomA); 2) good superposition of the phosphate acceptor groups of the substrates, and 3) good superposition of the diphosphate molecule with the beta- and gamma-phosphates of AMPPNP, suggesting that the reaction could proceed by an associative in-line mechanism. However, differences in conformations of the triphosphate moiety of AMPPNP molecules, the long distance (5.1 angstroms) between the phosphate acceptor and donor groups in FomA, and involvement of Lys18 instead of Lys9 in binding with the gamma-phosphate may indicate a different reaction mechanism. The present work identifies the active site residues of FomA responsible for substrate binding and specificity and proposes their roles in catalysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号