首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymic mechanism of starch breakdown in germinating rice seeds : 12. Biosynthesis of alpha-amylase in relation to protein glycosylation
Authors:Miyata S  Akazawa T
Affiliation:Research Institute for Biochemical Regulation, School of Agriculture, Nagoya University, Chikusa, Nagoya 464, Japan.
Abstract:The biosynthetic mechanism of α-amylase synthesis in germinating rice (Oryza sativa L. cv. Kimmazé) seeds has been studied both in vitro and in vivo. Special attention has been focused on the glycosylation of the enzyme molecule. Tunicamycin was found to inhibit glycosylation of α-amylase by 98% without significant inhibition of enzyme secretion. The inhibitory effect exerted by the antibiotic on glycosylation did not significantly alter enzyme activity.

In an in vitro system using poly-(A) RNA isolated from rice scutellum and the reticulocyte lysate translation system, a precursor form of α-amylase (precursor I) is formed. Inhibition of glycosylation by Tunicamycin allowed detection of a nonglycosylated precursor (II) of α-amylase. The molecular weight of the nonglycosylated precursor II produced in the presence of Tunicamycin was 2,900 daltons less than that of the mature form of α-amylase (44,000) produced in the absence of Tunicamycin, and 1,800 daltons less than the in vitro synthesized molecule.

The inhibition of glycosylation by Tunicamycin as well as in vitro translation helped clarify the heterogeneity of α-amylase isozymes. Isoelectrofocusing (pH 4-6) of the products, zymograms, and fluorography were employed on the separated isozyme components. The mature and Tunicamycin-treated nonglycosylated forms of α-amylase were found to consist of three isozymes. The in vitro translated precursor forms of α-amylase consisted of four multiple components. These results indicate that heterogeneity of α-amylase isozymes is not due to glycosylation of the enzyme protein but likely to differences in the primary structure of the protein moiety, which altogether support that rice α-amylase isozymes are encoded by multiple genes.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号