首页 | 本学科首页   官方微博 | 高级检索  
   检索      


B family DNA polymerases asymmetrically recognize pyrimidines and purines
Authors:Lund Travis J  Cavanaugh Nisha A  Joubert Nicolas  Urban Milan  Patro Jennifer N  Hocek Michal  Kuchta Robert D
Institution:Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, USA.
Abstract:We utilized a series of pyrimidine analogues modified at O(2), N-3, and N(4)/O(4) to determine if two B family DNA polymerases, human DNA polymerase α and herpes simplex virus I DNA polymerase, choose whether to polymerize pyrimidine dNTPs using the same mechanisms they use for purine dNTPs. Removing O(2) of a pyrimidine dNTP vastly decreased the level of incorporation by these enzymes and also compromised fidelity in the case of C analogues, while removing O(2) from the templating base had more modest effects. Removing the Watson-Crick hydrogen bonding groups of N-3 and N(4)/O(4) greatly impaired polymerization, both of the resulting dNTP analogues and of natural dNTPs opposite these pyrimidine analogues when present in the template strand. Thus, the Watson-Crick hydrogen bonding groups of a pyrimidine clearly play an important role in enhancing correct dNTP polymerization but are not essential for preventing misincorporation. These studies also indicate that DNA polymerases recognize bases extremely asymmetrically, both in terms of whether they are a purine or pyrimidine and whether they are in the template or are the incoming dNTP. The mechanistic implications of these results with regard to how polymerases discriminate between right and wrong dNTPs are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号