首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle.
Authors:T Shimada  A P Somlyo
Affiliation:Department of Physiology, University of Virginia School of Medicine, Charlottesville 22908.
Abstract:The effects of arachidonic acid (AA) and other long-chain fatty acids on voltage-dependent Ca channel current (ICa) were investigated, with the whole cell patch clamp method, in longitudinal smooth muscle cells of rabbit ileum. 10-30 microM AA caused a gradual depression of ICa. The inhibitory effect of AA was not prevented by indomethacin (10 microM) (an inhibitor of cyclooxygenase) or nordihydroguaiaretic acid (10 microM) (an inhibitor of lipoxygenase). 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H7; 25-50 microM) or staurosporine (2 microM) (inhibitors of protein kinase C) did not block the AA-induced inhibition of ICa, and application of phorbol ester (a protein kinase C activator) (phorbol-12,13-dibutyrate, 0.2 microM) did not mimic the AA action. Some other cis-unsaturated fatty acids (palmitoleic, linoleic, and oleic acids) were also found to depress ICa, while a trans-unsaturated fatty acid (linolelaidic acid) and saturated fatty acids (capric, lauric, myristic, and palmitic acids) had no inhibitory effects on ICa. Myristic acid consistently increased the amplitude of ICa at negative membrane potentials. The present results suggest the possible role of AA, and perhaps other fatty acids, in the physiological and/or pathological modulation of ICa in smooth muscle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号