首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analyses of the functional regions of DEAD-box RNA "helicases" with deletion and chimera constructs tested in vivo and in vitro
Authors:Banroques Josette  Cordin Olivier  Doère Monique  Linder Patrick  Tanner N Kyle
Institution:
  • 1 Institut de Biologie Physico-chimique, CNRS UPR9073 in association with the Université Paris Diderot, Sorbonne Paris Cité, Paris 75005, France
  • 2 Centre de Génétique Moléculaire, CNRS UPR3404, Gif-sur-Yvette 91198, France
  • 3 Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Geneva 1211, Switzerland
  • Abstract:The DEAD-box family of putative RNA helicases is composed of ubiquitous proteins that are found in nearly all organisms and that are involved in virtually all processes involving RNA. They are characterized by two tandemly linked, RecA-like domains that contain 11 conserved motifs and highly variable amino- and carboxy-terminal flanking sequences. For this reason, they are often considered to be modular multi-domain proteins. We tested this by making extensive BLASTs and sequence alignments to elucidate the minimal functional unit in nature. We then used this information to construct chimeras and deletions of six essential yeast proteins that were assayed in vivo. We purified many of the different constructs and characterized their biochemical properties in vitro. We found that sequence elements can only be switched between closely related proteins and that the carboxy-terminal sequences are important for high ATPase and strand displacement activities and for high RNA binding affinity. The amino-terminal elements were often toxic when overexpressed in vivo, and they may play regulatory roles. Both the amino and the carboxyl regions have a high frequency of sequences that are predicted to be intrinsically disordered, indicating that the flanking regions do not form distinct modular domains but probably assume an ordered structure with ligand binding. Finally, the minimal functional unit of the DEAD-box core starts two amino acids before the isolated phenylalanine of the Q motif and extends to about 35 residues beyond motif VI. These experiments provide evidence for how a highly conserved structural domain can be adapted to different cellular needs.
    Keywords:AMP-PNP  adenosine 5&prime    γ-iminotriphosphate  5-FOA  5-fluoroorotic acid  PDB  Protein Data Bank  ORF  open reading frame  SGal  synthetic medium galactosidase  RCSB  Research Collaboratory for Structural Bioinformatics  SF2  superfamily 2  HA  hemagglutinin  rRNA  ribosomal RNA
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号